Tverberg Partitions of Points on the Moment Curve
Define M d = { z ( t ) : t ∈ R } , where z ( t ) = ( t , t 2 , … , t d ) ∈ R d . Suppose A = { z ( t i ) : 1 ≤ i ≤ n } ⊂ M d , where t 1 < t 2 < ⋯ < t n . We show that the set A is “usually” in “strong general position” (SGP). The alternating r -partition of A is ( A 1 , A 2 , … , A r ) , w...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2017, Vol.57 (1), p.56-70 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Define
M
d
=
{
z
(
t
)
:
t
∈
R
}
, where
z
(
t
)
=
(
t
,
t
2
,
…
,
t
d
)
∈
R
d
. Suppose
A
=
{
z
(
t
i
)
:
1
≤
i
≤
n
}
⊂
M
d
, where
t
1
<
t
2
<
⋯
<
t
n
.
We show that the set
A
is “usually” in “strong general position” (SGP).
The alternating
r
-partition of
A
is
(
A
1
,
A
2
,
…
,
A
r
)
, where
We observe that if
r
=
2
and
n
≥
d
+
2
, then
conv
A
1
∩
conv
A
2
≠
∅
(i.e.,
(
A
1
,
A
2
)
is a Radon partition of
A
). For
r
≥
3
we show that if
n
≥
T
(
d
,
r
)
(
=
(
d
+
1
)
(
r
-
1
)
+
1
)
, then
⋂
ν
=
1
r
conv
A
ν
≠
∅
, provided the numbers
t
1
,
t
2
,
…
,
t
n
are chosen “sufficiently far”.
As a consequence, if
n
≥
L
(
d
,
r
,
k
)
=
T
(
d
,
k
)
+
(
r
-
k
)
⌈
T
(
d
,
k
)
k
⌉
,
(
r
≥
2
,
2
≤
k
≤
min
(
d
,
r
-
1
)
)
,
and the numbers
t
1
,
t
2
,
…
,
t
n
are chosen sufficiently far, then the alternating
r
-partition of
A
is an (
r
,
k
)-partition, i.e., each
k
of the sets
conv
A
ν
(
1
≤
ν
≤
r
) have a point in common. (
L
(
d
,
r
,
k
) is the smallest
n
such that a set of
n
points in SGP in
R
d
may admit an (
r
,
k
)-partition.)
In this paper we investigate some relationships among three notions: strong general position, Tverberg’s theorem and the moment curve. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-016-9813-3 |