A Nonlocal Biharmonic Operator and its Connection with the Classical Analogue
We consider a singular integral operator as a natural generalization to the biharmonic operator that arises in thin plate theory. The operator is built in the nonlocal calculus framework defined in (Math Models Methods Appl Sci 23(03):493–540, 2013 ) and connects with the recent theory of peridynami...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2017-02, Vol.223 (2), p.845-880 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a singular integral operator as a natural generalization to the biharmonic operator that arises in thin plate theory. The operator is built in the nonlocal calculus framework defined in (Math Models Methods Appl Sci 23(03):493–540,
2013
) and connects with the recent theory of peridynamics. This framework enables us to consider non-smooth approximations to fourth-order elliptic boundary-value problems. For these systems we introduce nonlocal formulations of the clamped and hinged boundary conditions that are well-defined even for irregular domains. We demonstrate the existence and uniqueness of solutions to these nonlocal problems and demonstrate their
L
2
-strong convergence to functions in
W
2,2
as the nonlocal interaction horizon goes to zero. For regular domains we identify these limits as the weak solutions of the corresponding classical elliptic boundary-value problems. As a part of our proof we also establish that the nonlocal Laplacian of a smooth function is Lipschitz continuous. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-016-1047-2 |