Highly Emissive Dye-Sensitized Upconversion Nanostructure for Dual-Photosensitizer Photodynamic Therapy and Bioimaging
Rare-earth-based upconversion nanotechnology has recently shown great promise for photodynamic therapy (PDT). However, the NIR-induced PDT is greatly restricted by overheating issues on normal bodies and low yields of reactive oxygen species (ROS, 1O2). Here, IR-808-sensitized upconversion nanoparti...
Gespeichert in:
Veröffentlicht in: | ACS nano 2017-04, Vol.11 (4), p.4133-4144 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rare-earth-based upconversion nanotechnology has recently shown great promise for photodynamic therapy (PDT). However, the NIR-induced PDT is greatly restricted by overheating issues on normal bodies and low yields of reactive oxygen species (ROS, 1O2). Here, IR-808-sensitized upconversion nanoparticles (NaGdF4:Yb,Er@NaGdF4:Nd,Yb) were combined with mesoporous silica, which has Ce6 (red-light-excited photosensitizer) and MC540 (green-light-excited photosensitizer) loaded inside through covalent bond and electrostatic interaction, respectively. When irradiated by tissue-penetrable 808 nm light, the IR-808 greatly absorb 808 nm photons and then emit a broadband peak which overlaps perfectly with the absorption of Nd3+ and Yb3+. Thereafter, the Nd3+/Yb3+ incorporated shell synergistically captures the emitted NIR photons to illuminate NaGdF4:Yb,Er zone and then radiate ultrabright green and red emissions. The visible emissions simultaneously activate the dual-photosensitizer to produce a large amount of ROS and, importantly, low heating effects. The in vitro and in vivo experiments indicate that the dual-photosensitizer nanostructure has trimodal (UCL/CT/MRI) imaging functions and high anticancer effectiveness, suggesting its potential clinical application as an imaging-guided PDT technique. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.7b00944 |