Differential UVC-induced gadd45 gene expression in xeroderma pigmentosum cells

Xeroderma pigmentosum C (XPC) is a DNA repair factor essential for global genome repair (GGR) in nucleotide excision repair (NER). In the present study we screened for factors regulated by XPC after DNA damage. Ultraviolet C (UVC) irradiation-induced stress response factors were analyzed by a cDNA m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2003-06, Vol.305 (4), p.1109-1115
Hauptverfasser: Chang, Hsien-Chang, Tsai, Jui-He, Leon Guo, Yueliang, Huang, Yu-Hsin, Tsai, Han-Ni, Tsai, Pei-Chien, Huang, Wenya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Xeroderma pigmentosum C (XPC) is a DNA repair factor essential for global genome repair (GGR) in nucleotide excision repair (NER). In the present study we screened for factors regulated by XPC after DNA damage. Ultraviolet C (UVC) irradiation-induced stress response factors were analyzed by a cDNA microarray chip system in HeLa and XP4PA-SV xpc mutant cell lines. The principal component analysis (PCA) method was employed to identify groups of genes with similar expression patterns over time after UVC irradiation. The growth arrest and DNA damage-inducible gene gadd45, as well as a small group of other genes, was found to exhibit an inducible expression pattern after 30 min of incubation in xpc mutants but not in HeLa cells. Subsequent studies showed that gadd45 gene expression post-UVC irradiation was also present in the GGR mutant cells xpa and xpd, but not in TCR mutant csb cells. This evidence indicates that gadd45 plays a regulatory role in GGR of NER.
ISSN:0006-291X
1090-2104
DOI:10.1016/S0006-291X(03)00900-8