CLDN-1 promoted the epithelial to migration and mesenchymal transition (EMT) in human bronchial epithelial cells via Notch pathway
Claudin-1 (CLDN-1) is one of main tight junction components that play an important role in epithelial–mesenchymal transition (EMT). However, the effects of CLDN-1 on the migration and EMT induced by TGF-β1 in primary normal human bronchial epithelial (NHBE) and BEAS-2B cells have not been clear. The...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biochemistry 2017-08, Vol.432 (1-2), p.91-98 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Claudin-1 (CLDN-1) is one of main tight junction components that play an important role in epithelial–mesenchymal transition (EMT). However, the effects of CLDN-1 on the migration and EMT induced by TGF-β1 in primary normal human bronchial epithelial (NHBE) and BEAS-2B cells have not been clear. The expression of CLDN-1 was quantified by Western blotting in NHBE and BEAS-2B cells. Cell migration and invasion were detected using transwell assays. The expression level of E-cadherin, N-cadherin, α-SMA, and Vimentin was evaluated by quantitative real-time PCR and Western blotting. Here we showed that the protein expression of CLDN-1 was increased exposed to TGF-β1 in a dose- and time-dependent manner. Knockdown of CLDN-1 using small interfering CLDN-1 RNA (siCLDN-1) prevented the migration and invasion in NHBE and BEAS-2B cells. Moreover, depletion of CLDN-1 promoted the E-cadherin expression and decreased the mRNA and protein levels of N-cadherin, α-SMA, and Vimentin induced by TGF-β1. Furthermore, CLDN-1 silencing resulted in the reduction of the Notch intracellular domain (NICD) and hairy enhancer of split-1 (Hes-1) in mRNA and protein level. Jagged-1, an activator of Notch signaling pathway, abrogated the protective function of siCLDN-1 in migration and EMT. In conclusion, CLDN-1 promoted the migration and EMT through the Notch signaling pathway. |
---|---|
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1007/s11010-017-3000-6 |