PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans

Deinococcus radiodurans exhibits an extraordinary ability to withstand the lethal and mutagenic effects of DNA damaging agents, particularly, ionizing radiation. Available evidence indicates that efficient repair of DNA damage and protection of the chromosomal structure are mainly responsible for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2003-06, Vol.306 (2), p.354-360
Hauptverfasser: Hua, Yuejin, Narumi, Issay, Gao, Guanjun, Tian, Bing, Satoh, Katsuya, Kitayama, Shigeru, Shen, Binghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deinococcus radiodurans exhibits an extraordinary ability to withstand the lethal and mutagenic effects of DNA damaging agents, particularly, ionizing radiation. Available evidence indicates that efficient repair of DNA damage and protection of the chromosomal structure are mainly responsible for the radioresistance. Little is known about the biochemical basis for this phenomenon. We have identified a unique gene, pprI, as a general switch for downstream DNA repair and protection pathways, from a natural mutant, in which pprI is disrupted by a transposon. Complete functional disruption of the gene in wild-type leads to dramatic sensitivity to ionizing radiation. Radioresistance of the disruptant could be fully restored by complementation with pprI. In response to radiation stress, PprI can significantly and specifically induce the gene expression of recA and pprA and enhance the enzyme activities of catalases. These results strongly suggest that PprI plays a crucial role in regulating multiple DNA repair and protection pathways in response to radiation stress.
ISSN:0006-291X
1090-2104
DOI:10.1016/S0006-291X(03)00965-3