Impact of surface ozone interactions on indoor air chemistry: A modeling study

An INdoor air Detailed Chemical Model was developed to investigate the impact of ozone reactions with indoor surfaces (including occupants), on indoor air chemistry in simulated apartments subject to ambient air pollution. The results are consistent with experimental studies showing that approximate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indoor air 2017-09, Vol.27 (5), p.1001-1011
Hauptverfasser: Kruza, M., Lewis, A. C., Morrison, G. C., Carslaw, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An INdoor air Detailed Chemical Model was developed to investigate the impact of ozone reactions with indoor surfaces (including occupants), on indoor air chemistry in simulated apartments subject to ambient air pollution. The results are consistent with experimental studies showing that approximately 80% of ozone indoors is lost through deposition to surfaces. The human body removes ozone most effectively from indoor air per square meter of surface, but the most significant surfaces for C6‐C10 aldehyde formation are soft furniture and painted walls owing to their large internal surfaces. Mixing ratios of between 8 and 11 ppb of C6‐C10 aldehydes are predicted to form in apartments in various locations in summer, the highest values are when ozone concentrations are enhanced outdoors. The most important aldehyde formed indoors is predicted to be nonanal (5‐7 ppb), driven by oxidation‐derived emissions from painted walls. In addition, ozone‐derived emissions from human skin were estimated for a small bedroom at nighttime with concentrations of nonanal, decanal, and 4‐oxopentanal predicted to be 0.5, 0.7, and 0.7 ppb, respectively. A detailed chemical analysis shows that ozone‐derived surface aldehyde emissions from materials and people change chemical processing indoors, through enhanced formation of nitrated organic compounds and decreased levels of oxidants.
ISSN:0905-6947
1600-0668
DOI:10.1111/ina.12381