Essentiality and convexity in the ranking of opportunity sets

This paper studies a class of binary relations on opportunity sets which we call opportunity relations (ORs). These are reflexive and transitive (pre-orders) and further satisfy a monotonicity and desirability condition. Associated with each OR is an essential element operator (Puppe, J Econ Theory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social choice and welfare 2016-12, Vol.47 (4), p.853-877
1. Verfasser: Ryan, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies a class of binary relations on opportunity sets which we call opportunity relations (ORs). These are reflexive and transitive (pre-orders) and further satisfy a monotonicity and desirability condition. Associated with each OR is an essential element operator (Puppe, J Econ Theory 68:174–199, 1996). Our main results axiomatically characterise three important classes of ORs: those for which any opportunity set lies in the same indifference class as its set of essential elements—the essential ORs; those whose essential element operator is the extreme point operator for some closure space (Ando, Discrete Math 306:3181–3188, 2006)—the closed ORs; and those whose essential element operator is the extreme point operator for some abstract convex geometry (Edelman and Jamison, Geometriae Dedicata 19:247–270, 1985)—the convex ORs. Our characterisation of convex ORs generalises the analysis of Klemisch-Ahlert (Soc Choice Welf 10:189–207, 1993). Our results also provide complementary perspectives on the well-known characterisation of closure operators by Kreps (Econometrica 47:565–577, 1979), as well as the recent work of Danilov and Koshevoy (Order 26:69–94, 2009; Soc Choice Welf 45:51–69, 2015).
ISSN:0176-1714
1432-217X
DOI:10.1007/s00355-016-0994-8