Front interaction induces excitable behavior
Spatially extended systems can support local transient excitations in which just a part of the system is excited. The mechanisms reported so far are local excitability and excitation of a localized structure. Here we introduce an alternative mechanism based on the coexistence of two homogeneous stab...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2017-02, Vol.95 (2-1), p.020201-020201, Article 020201 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spatially extended systems can support local transient excitations in which just a part of the system is excited. The mechanisms reported so far are local excitability and excitation of a localized structure. Here we introduce an alternative mechanism based on the coexistence of two homogeneous stable states and spatial coupling. We show the existence of a threshold for perturbations of the homogeneous state. Subthreshold perturbations decay exponentially. Superthreshold perturbations induce the emergence of a long-lived structure formed by two back to back fronts that join the two homogeneous states. While in typical excitability the trajectory follows the remnants of a limit cycle, here reinjection is provided by front interaction, such that fronts slowly approach each other until eventually annihilating. This front-mediated mechanism shows that extended systems with no oscillatory regimes can display excitability. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.95.020201 |