Scale-dependent colocalization in a population of gyrotactic swimmers
We study the small scale clustering of gyrotactic swimmers transported by a turbulent flow, when the intrinsic variability of the swimming parameters within the population is considered. By means of extensive numerical simulations, we find that the variety of the population introduces a characterist...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2017-02, Vol.95 (2-1), p.023108-023108, Article 023108 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the small scale clustering of gyrotactic swimmers transported by a turbulent flow, when the intrinsic variability of the swimming parameters within the population is considered. By means of extensive numerical simulations, we find that the variety of the population introduces a characteristic scale R^{*} in its spatial distribution. At scales smaller than R^{*} the swimmers are homogeneously distributed, while at larger scales an inhomogeneous distribution is observed with a fractal dimension close to what observed for a monodisperse population characterized by mean parameters. The scale R^{*} depends on the dispersion of the population and it is found to scale linearly with the standard deviation both for a bimodal and for a Gaussian distribution. Our numerical results, which extend recent findings for a monodisperse population, indicate that in principle it is possible to observe small scale, fractal clustering in a laboratory experiment with gyrotactic cells. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.95.023108 |