Fyn Binds to and Phosphorylates the Kidney Slit Diaphragm Component Nephrin

Recent investigations have focused on characterizing the molecular components of the podocyte intercellular junction, because several of these components, including Nephrin, are functionally necessary for development of normal podocyte structure and filter integrity. Accumulating evidence suggests t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-06, Vol.278 (23), p.20716-20723
Hauptverfasser: Verma, Rakesh, Wharram, Bryan, Kovari, Iulia, Kunkel, Robin, Nihalani, Deepak, Wary, Kishore K., Wiggins, Roger C., Killen, Paul, Holzman, Lawrence B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent investigations have focused on characterizing the molecular components of the podocyte intercellular junction, because several of these components, including Nephrin, are functionally necessary for development of normal podocyte structure and filter integrity. Accumulating evidence suggests that the Nephrin-associated protein complex is a signaling nexus. As such, Nephrin-dependent signaling might be mediated in part through Nephrin phosphorylation. Described are biochemical and mouse genetics experiments demonstrating that membrane-associated Nephrin is tyrosine-phosphorylated by the Src family kinase Fyn. Nephrin fractionated in detergent-resistant glomerular membrane fractions with Fyn and Yes. Fyn directly bound Nephrin via its SH3 domain, and Fyn directly phosphorylated Nephrin. Glomeruli in which Fyn, Yes, or Fyn and Yes were genetically deleted in mice were characterized to explore the relationship between these kinases and Nephrin. Fyn deletion resulted in coarsening of podocyte foot processes and marked attenuation of Nephrin phosphorylation in isolated glomerular detergent-resistant membrane fractions. Yes deletion had no identifiable effect on podocyte morphology but dramatically increased Nephrin phosphorylating activity. Similar to Fyn deletion, simultaneous deletion of Fyn and Yes reduced Nephrin phosphorylating activity. These results demonstrate that endogenous Fyn catalyzes Nephrin phosphorylation in podocyte detergent-resistant membrane fractions. Although Yes appears to effect the regulation of Nephrin phosphorylation, the mechanism by which this occurs requires investigation.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M301689200