Catalpol protects glucose-deprived rat embryonic cardiac cells by inducing mitophagy and modulating estrogen receptor

Abstract Catalpol, a bioactive component from Rehmannia glutinosa (Di Huang), has been widely used to protect cardiomyocytes against myocardial ischemia. The aim of the present study was to investigate the anti-apoptotic and anti-oxidative effects of Catalpol on glucose-starved H9c2 cells for cardio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicine & pharmacotherapy 2017-05, Vol.89, p.973-982
Hauptverfasser: Lin, Chao, Lu, Ying, Yan, Xiaojing, Wu, Xiang, Kuai, Meiyu, Sun, Xin, Chen, Qi, Kong, Xueyun, Liu, Zhaoguo, Tang, Yuping, Jing, Yi, Li, Yu, Zhang, Qichun, Bian, Huimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Catalpol, a bioactive component from Rehmannia glutinosa (Di Huang), has been widely used to protect cardiomyocytes against myocardial ischemia. The aim of the present study was to investigate the anti-apoptotic and anti-oxidative effects of Catalpol on glucose-starved H9c2 cells for cardio-protection and to elucidate the underlying mechanisms. Here, we showed that Catalpol protected the glucose-starved H9c2 cells through reducing apoptosis and attenuating oxidative damage. Moreover, the increases of autophagic lysosomes, LC3, autophagic flux and autophagic vacuole were observed in Catalpol-treated cells using flow cytometer and fluorescence microscope. Western blotting analyses showed that the autophagy-related proteins (LC3, Beclin1 and ULK) were markedly increased in Catalpol-treated cells, suggesting that Catalpol up-regulated autophagy in glucose starved H9c2 cells. Mechanistic investigations revealed that the autophagy inhibitor 3-MA markedly abrogated Catalpol’s anti-apoptotic and anti-oxidative effects and prevented Catalpol-induced mitophagy. Furthermore, the estrogen receptor inhibitor tamoxifen significantly abolished Catalpol up-regulation of mitophagic related proteins (LC3, Beclin 1, p62, ATG5). Collectively, these data revealed that Catalpol inhibited apoptosis and oxidative stress in glucose-deprived H9c2 cell through promoting cell mitophagy and modulating estrogen receptor, supporting the notion that Catalpol could be a novel drug candidate against myocardial ischemia for the treatment of cardiovascular diseases.
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2017.02.069