Reversible Tethering of Polymers onto Catechol-Based Titanium Platforms
In this article, we report on the reversible tethering of end-functionalized polymers onto catechol-based titanium platforms by exploiting the reversible Diels–Alder (DA) cycloaddition reaction. For this purpose, furan and maleimide end-functionalized polymers, prepared via reversible addition–fragm...
Gespeichert in:
Veröffentlicht in: | Langmuir 2017-04, Vol.33 (14), p.3434-3443 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we report on the reversible tethering of end-functionalized polymers onto catechol-based titanium platforms by exploiting the reversible Diels–Alder (DA) cycloaddition reaction. For this purpose, furan and maleimide end-functionalized polymers, prepared via reversible addition–fragmentation chain transfer polymerization, were covalently grafted through a DA reaction onto reactive titanium platforms elaborated from catechol-based anchors incorporating either the furan or the maleimide moiety. As a proof of concept, a hydrophilic poly(oligo(ethylene glycol)acrylate) (POEGA) and a hydrophobic poly(2,2,2-trifluoroethyl acrylate) (PTFEA) were grafted onto titanium surfaces and subsequently detached by exploiting the thermoreversible nature of the DA reaction [i.e., retro Diels–Alder (rDA)]. These polymers were interchanged by performing a second DA reaction, thereby allowing the titanium surface wettability to be switched from hydrophobic to hydrophilic on demand. The grafting of furan/maleimide end-functionalized polymers onto functionalized (maleimide/furan, respectively) catechol-based titanium platforms and the subsequent rDA/DA sequence used for switching the titanium surface were evidenced by attenuated total reflectance–Fourier transform-infrared spectroscopy, X-ray photoelectron spectroscopy, and contact angle measurements. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.7b00160 |