Reversible Tethering of Polymers onto Catechol-Based Titanium Platforms

In this article, we report on the reversible tethering of end-functionalized polymers onto catechol-based titanium platforms by exploiting the reversible Diels–Alder (DA) cycloaddition reaction. For this purpose, furan and maleimide end-functionalized polymers, prepared via reversible addition–fragm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2017-04, Vol.33 (14), p.3434-3443
Hauptverfasser: Laure, William, Fournier, David, Woisel, Patrice, Lyskawa, Joël
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we report on the reversible tethering of end-functionalized polymers onto catechol-based titanium platforms by exploiting the reversible Diels–Alder (DA) cycloaddition reaction. For this purpose, furan and maleimide end-functionalized polymers, prepared via reversible addition–fragmentation chain transfer polymerization, were covalently grafted through a DA reaction onto reactive titanium platforms elaborated from catechol-based anchors incorporating either the furan or the maleimide moiety. As a proof of concept, a hydrophilic poly­(oligo­(ethylene glycol)­acrylate) (POEGA) and a hydrophobic poly­(2,2,2-trifluoroethyl acrylate) (PTFEA) were grafted onto titanium surfaces and subsequently detached by exploiting the thermoreversible nature of the DA reaction [i.e., retro Diels–Alder (rDA)]. These polymers were interchanged by performing a second DA reaction, thereby allowing the titanium surface wettability to be switched from hydrophobic to hydrophilic on demand. The grafting of furan/maleimide end-functionalized polymers onto functionalized (maleimide/furan, respectively) catechol-based titanium platforms and the subsequent rDA/DA sequence used for switching the titanium surface were evidenced by attenuated total reflectance–Fourier transform-infrared spectroscopy, X-ray photoelectron spectroscopy, and contact angle measurements.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.7b00160