Linking Above- and Belowground Responses to 16 Years of Fertilization, Mowing, and Removal of the Dominant Species in a Temperate Grassland

Species-rich oligotrophic meadows are affected by a wide range of management interventions that influence their functioning and capacity to deliver ecosystem services, but long-term studies on the above-and belowground adaptations to different management tools are still scarce. We focused on the int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecosystems (New York) 2017-03, Vol.20 (2), p.354-367
Hauptverfasser: Kotas, Petr, Choma, Michal, Šantrůčková, Hana, Lepš, Jan, Tříska, Jan, Kaštovská, Eva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Species-rich oligotrophic meadows are affected by a wide range of management interventions that influence their functioning and capacity to deliver ecosystem services, but long-term studies on the above-and belowground adaptations to different management tools are still scarce. We focused on the interactive effects of NPK fertilization, mowing, and removal of the initially dominant species (Molinia caerulea) on plant, soil, and microbial responses in wet oligotrophic grassland in a 16-year full-factorial manipulative experiment. Changes in vegetation composition, soil pH, and nutrient availability were accompanied by altered microbial phospholipid fatty acid (PLFA) composition, whereas treatment effects on soil microbial biomass and carbon (C) mineralization were mainly related to changes in soil organic matter (SOM) content and nutrient availability. Fertilization decreased plant species richness aboveground and lowered SOM storage and microbial activity belowground. Mowing preserved high plant diversity and led to more efficient recycling of N within the grassland, whereas Molinia removal significantly affected only plant community composition. Mowing combined with fertilization maintained high species richness only in the short term. Belowground, mowing reduced N leaching from the fertilized system but did not prevent SOM depletion, soil acidification, and concomitant adverse effects on soil microbes. We conclude that annual mowing is the appropriate type of extensive management for oligotrophic species-rich meadows, but the concomitant nutrient depletion should not be compensated for by regular NPK fertilization due to its adverse effects on soil quality.
ISSN:1432-9840
1435-0629
DOI:10.1007/s10021-016-0031-x