Effects of co-overexpression of the genes of Rubisco and transketolase on photosynthesis in rice

Metabolome analyses have indicated an accumulation of sedoheptulose 7-phosphate in transgenic rice plants with overproduction of Rubisco (Suzuki et al. in Plant Cell Environ 35:1369–1379, 2012 . doi: 10.1111/j.1365-3040.2012.02494.x ). Since Rubisco overproduction did not quantitatively enhance phot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photosynthesis research 2017-03, Vol.131 (3), p.281-289
Hauptverfasser: Suzuki, Yuji, Kondo, Eri, Makino, Amane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metabolome analyses have indicated an accumulation of sedoheptulose 7-phosphate in transgenic rice plants with overproduction of Rubisco (Suzuki et al. in Plant Cell Environ 35:1369–1379, 2012 . doi: 10.1111/j.1365-3040.2012.02494.x ). Since Rubisco overproduction did not quantitatively enhance photosynthesis even under CO 2 -limited conditions, it is suspected that such an accumulation of sedoheptulose 7-phosphate hampers the improvement of photosynthetic capacity. In the present study, the gene of transketolase, which is involved in the metabolism of sedoheptulose 7-phosphate, was co-overexpressed with the Rubisco small subunit gene in rice. Rubisco and transketolase were successfully overproduced in comparison with those in wild-type plants by 35–53 and 39–84 %, respectively. These changes in the amounts of the proteins were associated with those of the mRNA levels. However, the rate of CO 2 assimilation under high irradiance and different [CO 2 ] did not differ between co-overexpressed plants and wild-type plants. Thus, co-overproduction of Rubisco and transketolase did not improve photosynthesis in rice. Transketolase was probably not a limiting factor of photosynthesis as overproduction of transketolase alone by 80–94 % did not affect photosynthesis.
ISSN:0166-8595
1573-5079
DOI:10.1007/s11120-016-0320-4