Effects of pulse and press additions of salt on biofilms of nutrient-rich streams

Chronic and pulse increments of salinity can cause different consequences on the aquatic communities, and its effects are related to factors such as the magnitude, frequency and ionic composition, as well as on the baseline salt concentrations in the water. The aim of this study was to explore the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2017-02, Vol.579, p.1496-1503
Hauptverfasser: Cochero, Joaquín, Licursi, Magdalena, Gómez, Nora
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chronic and pulse increments of salinity can cause different consequences on the aquatic communities, and its effects are related to factors such as the magnitude, frequency and ionic composition, as well as on the baseline salt concentrations in the water. The aim of this study was to explore the responses of the biofilms from a nutrient-rich stream to both pulse and chronic additions of salt, along with their recovery after the stressor had been removed. For this purpose, a microcosm study was conducted exposing biofilms to water enriched with sodium chloride in two treatments (press and pulse), and comparing the changes in the biofilm with control microcosms without salt additions. The experiment lasted 72h, and the variables measured included bacterial density, chlorophyll-a concentration, community composition, total carbohydrate content, oxygen consumption and the percentage of nuclear alterations in diatoms. Both treatments resulted in a decrease in the bacterial density of the biofilm and in oxygen consumption; the chronic treatment in particular also caused an increased percentage of nuclear abnormalities in the diatom assemblage. The biofilm recovered to control levels after the treatments had been discontinued for 72h. We concluded that the biofilms can be altered significantly under both chronic and pulse additions of salt even after a short-term exposure, and that the community can recover if the stressor is withdrawn. [Display omitted] •Biofilms from eutrophic streams were exposed to pulse and press increments in salinity.•The experiment was conducted in microcosm for 72h, with a 72hs recovery period.•Bacterial abundance and oxygen consumption decreased due to both treatments.•The proportion of abnormal nuclei in diatoms increased due to the chronic exposure.•All effects reverted to control levels after 72h of recovery
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2016.11.152