Uranium Redox Transformations after U(VI) Coprecipitation with Magnetite Nanoparticles

Uranium redox states and speciation in magnetite nanoparticles coprecipitated with U­(VI) for uranium loadings varying from 1000 to 10 000 ppm are investigated by X-ray absorption spectroscopy (XAS). It is demonstrated that the U M4 high energy resolution X-ray absorption near edge structure (HR-XAN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2017-02, Vol.51 (4), p.2217-2225
Hauptverfasser: Pidchenko, Ivan, Kvashnina, Kristina O, Yokosawa, Tadahiro, Finck, Nicolas, Bahl, Sebastian, Schild, Dieter, Polly, Robert, Bohnert, Elke, Rossberg, André, Göttlicher, Jörg, Dardenne, Kathy, Rothe, Jörg, Schäfer, Thorsten, Geckeis, Horst, Vitova, Tonya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uranium redox states and speciation in magnetite nanoparticles coprecipitated with U­(VI) for uranium loadings varying from 1000 to 10 000 ppm are investigated by X-ray absorption spectroscopy (XAS). It is demonstrated that the U M4 high energy resolution X-ray absorption near edge structure (HR-XANES) method is capable to clearly characterize U­(IV), U­(V), and U­(VI) existing simultaneously in the same sample. The contributions of the three different uranium redox states are quantified with the iterative transformation factor analysis (ITFA) method. U L3 XAS and transmission electron microscopy (TEM) reveal that initially sorbed U­(VI) species recrystallize to nonstoichiometric UO2+x nanoparticles within 147 days when stored under anoxic conditions. These U­(IV) species oxidize again when exposed to air. U M4 HR-XANES data demonstrate strong contribution of U­(V) at day 10 and that U­(V) remains stable over 142 days under ambient conditions as shown for magnetite nanoparticles containing 1000 ppm U. U L3 XAS indicates that this U­(V) species is protected from oxidation likely incorporated into octahedral magnetite sites. XAS results are supported by density functional theory (DFT) calculations. Further characterization of the samples include powder X-ray diffraction (pXRD), scanning electron microscopy (SEM) and Fe 2p X-ray photoelectron spectroscopy (XPS).
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.6b04035