THE EFFECT OF UNRESOLVED BINARIES ON GLOBULAR CLUSTER PROPER-MOTION DISPERSION PROFILES

ABSTRACT High-precision kinematic studies of globular clusters (GCs) require an accurate knowledge of all possible sources of contamination. Among other sources, binary stars can introduce systematic biases in the kinematics. Using a set of Monte Carlo cluster simulations with different concentratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2016-03, Vol.820 (1), p.L22-L22
Hauptverfasser: Bianchini, P., Norris, M. A., Ven, G. van de, Schinnerer, E., Bellini, A., Marel, R. P. van der, Watkins, L. L., Anderson, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT High-precision kinematic studies of globular clusters (GCs) require an accurate knowledge of all possible sources of contamination. Among other sources, binary stars can introduce systematic biases in the kinematics. Using a set of Monte Carlo cluster simulations with different concentrations and binary fractions, we investigate the effect of unresolved binaries on proper-motion dispersion profiles, treating the simulations like Hubble Space Telescope proper-motion samples. Since GCs evolve toward a state of partial energy equipartition, more-massive stars lose energy and decrease their velocity dispersion. As a consequence, on average, binaries have a lower velocity dispersion, since they are more-massive kinematic tracers. We show that, in the case of clusters with high binary fractions (initial binary fractions of 50%) and high concentrations (i.e., closer to energy equipartition), unresolved binaries introduce a color-dependent bias in the velocity dispersion of main-sequence stars of the order of 0.1-0.3 km s−1 (corresponding to 1%−6% of the velocity dispersion), with the reddest stars having a lower velocity dispersion, due to the higher fraction of contaminating binaries. This bias depends on the ability to distinguish binaries from single stars, on the details of the color-magnitude diagram and the photometric errors. We apply our analysis to the HSTPROMO data set of NGC 7078 (M15) and show that no effect ascribable to binaries is observed, consistent with the low binary fraction of the cluster. Our work indicates that binaries do not significantly bias proper-motion velocity-dispersion profiles, but should be taken into account in the error budget of kinematic analyses.
ISSN:2041-8205
2041-8213
DOI:10.3847/2041-8205/820/1/L22