Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex

Fear-related disorders are thought to reflect strong and persistent fear associations. The authors show that optogenetic high-frequency stimulation of direct amygdala inputs to the prefrontal cortex can destabilize fear memories and facilitate the extinction of previously acquired fear associations....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2017-06, Vol.20 (6), p.836-844
Hauptverfasser: Klavir, Oded, Prigge, Matthias, Sarel, Ayelet, Paz, Rony, Yizhar, Ofer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fear-related disorders are thought to reflect strong and persistent fear associations. The authors show that optogenetic high-frequency stimulation of direct amygdala inputs to the prefrontal cortex can destabilize fear memories and facilitate the extinction of previously acquired fear associations. Fear-related disorders are thought to reflect strong and persistent fear memories. The basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) form strong reciprocal synaptic connections that play a key role in acquisition and extinction of fear memories. While synaptic contacts of BLA cells onto mPFC neurons are likely to play a crucial role in this process, the BLA connects with several additional nuclei within the fear circuit that could relay fear-associated information to the mPFC, and the contribution of direct monosynaptic BLA–mPFC inputs is not yet clear. Here we establish an optogenetic stimulation protocol that induces synaptic depression in BLA–mPFC synapses. In behaving mice, optogenetic high-frequency stimulation of BLA inputs to mPFC interfered with retention of cued associations, attenuated previously acquired cue-associated responses in mPFC neurons and facilitated extinction. Our findings demonstrate the contribution of BLA inputs to mPFC in forming and maintaining cued fear associations.
ISSN:1097-6256
1546-1726
DOI:10.1038/nn.4523