Simple, sensitive and label–free electrochemical detection of microRNAs based on the in situ formation of silver nanoparticles aggregates for signal amplification

This work presented a simple, sensitive and label-free electrochemical method for the detection of microRNAs (miRNAs). It is based on the boronate ester covalent interaction between 4-mercaptophenylboronic acid (MPBA) and cis-diol at the 3′-terminal of miRNAs and the MPBA-induced in situ formation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2017-08, Vol.94, p.235-242
Hauptverfasser: Liu, Leilei, Chang, Yong, Xia, Ning, Peng, Peizhen, Zhang, Liping, Jiang, Mengsha, Zhang, Jiebin, Liu, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presented a simple, sensitive and label-free electrochemical method for the detection of microRNAs (miRNAs). It is based on the boronate ester covalent interaction between 4-mercaptophenylboronic acid (MPBA) and cis-diol at the 3′-terminal of miRNAs and the MPBA-induced in situ formation of citrate-capped silver nanoparticles (AgNPs) aggregates as labels on the electrode surface. In this design, MPBA acted as the cross-linker of AgNPs assembly. Specifically, the thiolated hairpin-like DNA probe was assembled onto the gold nanoparticles (nano-Au) modified electrode surface through the Ag-S interaction. After hybridization with the target miRNAs, MPBA was anchored onto the 3′-terminal of miRNAs through the formation of a boronate ester bond and then captured AgNP via the Ag-S interaction. Meanwhile, free MPBA molecules in solution induced the in situ assembly of AgNPs on electrode surface through the covalent interactions between α-hydroxycarboxylate of citrate and boronate of MPBA and the formation of Ag-S bonds. The electrochemical signal was therefore amplified due to the formation of AgNPs network architecture. To demonstrate the feasibility and analytical performances of the method, miRNA-21 was determined as a model analyte. The detection limit was found to be 20 aM. The viability of our method for biological sample assays was demonstrated by measuring the miRNA-21 contents in three human serum samples. In contrast to other signal-amplified electrochemical strategies for miRNAs detection, our method requires simple detection principle and easy operation procedure and obviates the specific modification of nanoparticles and capture/detection probes. •4-Mercaptophenylboronic acid reacts with cis-diol at the 3′-terminal of miRNAs.•4-Mercaptophenylboronic acid induces in situ formation of AgNPs aggregate labels.•The in situ assembly of AgNPs is based on the Ag-S and boronate-citrate interactions.•A hairpin-like DNA probe was used for the capture of miRNAs.•MiRNAs could be determined with a detection limit of 20 aM.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2017.02.041