In-Situ Formed Type I Nanocrystalline Perovskite Film for Highly Efficient Light-Emitting Diode

Excellent color purity with a tunable band gap renders organic–inorganic halide perovskite highly capable of performing as light-emitting diodes (LEDs). Perovskite nanocrystals show a photoluminescence quantum yield exceeding 90%, which, however, decreases to lower than 20% upon formation of a thin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-03, Vol.11 (3), p.3311-3319
Hauptverfasser: Lee, Jin-Wook, Choi, Yung Ji, Yang, June-Mo, Ham, Sujin, Jeon, Sang Kyu, Lee, Jun Yeob, Song, Young-Hyun, Ji, Eun Kyung, Yoon, Dae-Ho, Seo, Seongrok, Shin, Hyunjung, Han, Gil Sang, Jung, Hyun Suk, Kim, Dongho, Park, Nam-Gyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excellent color purity with a tunable band gap renders organic–inorganic halide perovskite highly capable of performing as light-emitting diodes (LEDs). Perovskite nanocrystals show a photoluminescence quantum yield exceeding 90%, which, however, decreases to lower than 20% upon formation of a thin film. The limited photoluminescence quantum yield of a perovskite thin film has been a formidable obstacle for development of highly efficient perovskite LEDs. Here, we report a method for highly luminescent MAPbBr3 (MA = CH3NH3) nanocrystals formed in situ in a thin film based on nonstoichiometric adduct and solvent-vacuum drying approaches. Excess MABr with respect to PbBr2 in precursor solution plays a critical role in inhibiting crystal growth of MAPbBr3, thereby forming nanocrystals and creating type I band alignment with core MAPbBr3 by embedding MAPbBr3 nanocrystals in the unreacted wider band gap MABr. A solvent-vacuum drying process was developed to preserve nanocrystals in the film, which realizes a fast photoluminescence lifetime of 3.9 ns along with negligible trapping processes. Based on a highly luminescent nanocrystalline MAPbBr3 thin film, a highly efficient green LED with a maximum external quantum efficiency of 8.21% and a current efficiency of 34.46 cd/A was demonstrated.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.7b00608