Overexpression of glutamate decarboxylase in transgenic tobacco plants confers resistance to the northern root-knot nematode
Previous research suggests that the endogenous synthesis of gamma-aminobutyrate (GABA), a naturally occurring inhibitory neurotransmitter, serves as a plant defense mechanism against invertebrate pests. Here, we tested the hypothesis that elevated GABA levels in engineered tobacco confer resistance...
Gespeichert in:
Veröffentlicht in: | Molecular breeding 2003-05, Vol.11 (4), p.277-285 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous research suggests that the endogenous synthesis of gamma-aminobutyrate (GABA), a naturally occurring inhibitory neurotransmitter, serves as a plant defense mechanism against invertebrate pests. Here, we tested the hypothesis that elevated GABA levels in engineered tobacco confer resistance to the northern root nematode (Meloidogyne hapla). This nematode species was chosen because of its sedentary nature and economic importance in Canada. We derived nine phenotypically normal, homozygous lines of transgenic tobacco (Nicotiana tabacum L.), which contain one or two copies of a full-length, chimeric tobacco glutamate decarboxylase (GAD) cDNA or a mutant version that lacks the autoinhibitory calmodulin-binding domain, under the control of a chimeric octopine synthase/mannopine synthase promoter. Regardless of experimental protocol, uninfected transgenic lines consistently contained higher GABA concentrations than wild-type controls. Growth chamber trials revealed that 9–12 weeks after inoculation of tobacco transplants with the northern root-knot nematode, mature plants of five lines possessed significantly fewer egg masses on the root surface when the data were expressed on both root and root fresh weight bases. Therefore, it can be concluded that constitutive transgenic expression of GAD conferred resistance against the root-knot nematode in phenotypically normal tobacco plants, probably via a GABA-based mechanism. |
---|---|
ISSN: | 1380-3743 1572-9788 |
DOI: | 10.1023/A:1023483106582 |