Soil moisture could enhance electrokinetic remediation of arsenic-contaminated soil

Electrokinetic remediation (EKR) is the most efficient technique for remediation of fine-grained soil. The primary removal mechanisms of heavy metal in EKR are the electromigration and electroosmosis flow under appropriate electric gradients. Most EKR studies have researched the variation according...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2017-04, Vol.24 (10), p.9820-9825
Hauptverfasser: Shin, Su-Yeon, Park, Sang-Min, Baek, Kitae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrokinetic remediation (EKR) is the most efficient technique for remediation of fine-grained soil. The primary removal mechanisms of heavy metal in EKR are the electromigration and electroosmosis flow under appropriate electric gradients. Most EKR studies have researched the variation according to the electrolyte and electric voltage. Also, EKR could be influenced by the migration velocity of ions, while few studies have investigated the effect of moisture content. In this study, soil moisture was controlled by using tap water and NaOH as electrolytes to enhance electromigration and electroosmosis flow. In both electrolytes, the higher moisture content led to the more As removal efficiency, but there were no differences between tap water and NaOH. Therefore, tap water was the most cost-effective electrolyte to remove As from fine-grained soil.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-017-8720-3