Salmon provides fast and bias-aware quantification of transcript expression
Salmon is a computational tool that uses sample-specific models and a dual-phase inference procedure to correct biases in RNA-seq data and rapidly quantify transcript abundances. We introduce Salmon, a lightweight method for quantifying transcript abundance from RNA–seq reads. Salmon combines a new...
Gespeichert in:
Veröffentlicht in: | Nature methods 2017-04, Vol.14 (4), p.417-419 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 419 |
---|---|
container_issue | 4 |
container_start_page | 417 |
container_title | Nature methods |
container_volume | 14 |
creator | Patro, Rob Duggal, Geet Love, Michael I Irizarry, Rafael A Kingsford, Carl |
description | Salmon is a computational tool that uses sample-specific models and a dual-phase inference procedure to correct biases in RNA-seq data and rapidly quantify transcript abundances.
We introduce Salmon, a lightweight method for quantifying transcript abundance from RNA–seq reads. Salmon combines a new dual-phase parallel inference algorithm and feature-rich bias models with an ultra-fast read mapping procedure. It is the first transcriptome-wide quantifier to correct for fragment GC-content bias, which, as we demonstrate here, substantially improves the accuracy of abundance estimates and the sensitivity of subsequent differential expression analysis. |
doi_str_mv | 10.1038/nmeth.4197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1875141462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1875141462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-800772ae1a9220616b06948cfa4a3f6e5e2f028516c4c22c47cb041715f9724d3</originalsourceid><addsrcrecordid>eNptkMtKAzEUhoMotl42PoAMuBFlapJJJslSijcsuFDXIZNJdMrcmmS8vL2pbRXE1Tnwf_zn8AFwhOAEwYxftI0JrxOCBNsCY0QJTxmCdHuzQ4FGYM_7OYRZRjDdBSPMcZ4JKsbg_lHVTdcmveveqtL4xCofEtWWSVEpn6p35UyyGFQbKltpFarIdjYJTrVeu6oPifnonfE-Bgdgx6ram8P13AfP11dP09t09nBzN72cpZpgHlIOIWNYGaQExjBHeQFzQbi2iqjM5oYabCHmFOWaaIw1YbqABDFErWCYlNk-OF31xqcXg_FBNpXXpq5Va7rBS8QZRQSRHEf05A867wbXxu8khpwygaPBSJ2tKO06752xsndVo9ynRFAuFctvxXKpOMLH68qhaEz5g26cRuB8BfgYtS_G_d78p-4LoWyFTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085792103</pqid></control><display><type>article</type><title>Salmon provides fast and bias-aware quantification of transcript expression</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Patro, Rob ; Duggal, Geet ; Love, Michael I ; Irizarry, Rafael A ; Kingsford, Carl</creator><creatorcontrib>Patro, Rob ; Duggal, Geet ; Love, Michael I ; Irizarry, Rafael A ; Kingsford, Carl</creatorcontrib><description>Salmon is a computational tool that uses sample-specific models and a dual-phase inference procedure to correct biases in RNA-seq data and rapidly quantify transcript abundances.
We introduce Salmon, a lightweight method for quantifying transcript abundance from RNA–seq reads. Salmon combines a new dual-phase parallel inference algorithm and feature-rich bias models with an ultra-fast read mapping procedure. It is the first transcriptome-wide quantifier to correct for fragment GC-content bias, which, as we demonstrate here, substantially improves the accuracy of abundance estimates and the sensitivity of subsequent differential expression analysis.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/nmeth.4197</identifier><identifier>PMID: 28263959</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/2415 ; 631/114/794 ; 631/208/212/2019 ; Abundance ; Algorithms ; Base Composition ; Bayes Theorem ; Bias ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical Engineering/Biotechnology ; brief-communication ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Profiling - statistics & numerical data ; Life Sciences ; Proteomics ; Ribonucleic acid ; RNA ; Sensitivity analysis ; Sequence Analysis, RNA - methods ; Sequence Analysis, RNA - statistics & numerical data ; Transcription</subject><ispartof>Nature methods, 2017-04, Vol.14 (4), p.417-419</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>Copyright Nature Publishing Group Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-800772ae1a9220616b06948cfa4a3f6e5e2f028516c4c22c47cb041715f9724d3</citedby><cites>FETCH-LOGICAL-c428t-800772ae1a9220616b06948cfa4a3f6e5e2f028516c4c22c47cb041715f9724d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmeth.4197$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmeth.4197$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28263959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patro, Rob</creatorcontrib><creatorcontrib>Duggal, Geet</creatorcontrib><creatorcontrib>Love, Michael I</creatorcontrib><creatorcontrib>Irizarry, Rafael A</creatorcontrib><creatorcontrib>Kingsford, Carl</creatorcontrib><title>Salmon provides fast and bias-aware quantification of transcript expression</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Salmon is a computational tool that uses sample-specific models and a dual-phase inference procedure to correct biases in RNA-seq data and rapidly quantify transcript abundances.
We introduce Salmon, a lightweight method for quantifying transcript abundance from RNA–seq reads. Salmon combines a new dual-phase parallel inference algorithm and feature-rich bias models with an ultra-fast read mapping procedure. It is the first transcriptome-wide quantifier to correct for fragment GC-content bias, which, as we demonstrate here, substantially improves the accuracy of abundance estimates and the sensitivity of subsequent differential expression analysis.</description><subject>631/114/2415</subject><subject>631/114/794</subject><subject>631/208/212/2019</subject><subject>Abundance</subject><subject>Algorithms</subject><subject>Base Composition</subject><subject>Bayes Theorem</subject><subject>Bias</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>brief-communication</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Profiling - statistics & numerical data</subject><subject>Life Sciences</subject><subject>Proteomics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sensitivity analysis</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Sequence Analysis, RNA - statistics & numerical data</subject><subject>Transcription</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkMtKAzEUhoMotl42PoAMuBFlapJJJslSijcsuFDXIZNJdMrcmmS8vL2pbRXE1Tnwf_zn8AFwhOAEwYxftI0JrxOCBNsCY0QJTxmCdHuzQ4FGYM_7OYRZRjDdBSPMcZ4JKsbg_lHVTdcmveveqtL4xCofEtWWSVEpn6p35UyyGFQbKltpFarIdjYJTrVeu6oPifnonfE-Bgdgx6ram8P13AfP11dP09t09nBzN72cpZpgHlIOIWNYGaQExjBHeQFzQbi2iqjM5oYabCHmFOWaaIw1YbqABDFErWCYlNk-OF31xqcXg_FBNpXXpq5Va7rBS8QZRQSRHEf05A867wbXxu8khpwygaPBSJ2tKO06752xsndVo9ynRFAuFctvxXKpOMLH68qhaEz5g26cRuB8BfgYtS_G_d78p-4LoWyFTA</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Patro, Rob</creator><creator>Duggal, Geet</creator><creator>Love, Michael I</creator><creator>Irizarry, Rafael A</creator><creator>Kingsford, Carl</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170401</creationdate><title>Salmon provides fast and bias-aware quantification of transcript expression</title><author>Patro, Rob ; Duggal, Geet ; Love, Michael I ; Irizarry, Rafael A ; Kingsford, Carl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-800772ae1a9220616b06948cfa4a3f6e5e2f028516c4c22c47cb041715f9724d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/114/2415</topic><topic>631/114/794</topic><topic>631/208/212/2019</topic><topic>Abundance</topic><topic>Algorithms</topic><topic>Base Composition</topic><topic>Bayes Theorem</topic><topic>Bias</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>brief-communication</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Profiling - statistics & numerical data</topic><topic>Life Sciences</topic><topic>Proteomics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sensitivity analysis</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Sequence Analysis, RNA - statistics & numerical data</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patro, Rob</creatorcontrib><creatorcontrib>Duggal, Geet</creatorcontrib><creatorcontrib>Love, Michael I</creatorcontrib><creatorcontrib>Irizarry, Rafael A</creatorcontrib><creatorcontrib>Kingsford, Carl</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patro, Rob</au><au>Duggal, Geet</au><au>Love, Michael I</au><au>Irizarry, Rafael A</au><au>Kingsford, Carl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salmon provides fast and bias-aware quantification of transcript expression</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>14</volume><issue>4</issue><spage>417</spage><epage>419</epage><pages>417-419</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Salmon is a computational tool that uses sample-specific models and a dual-phase inference procedure to correct biases in RNA-seq data and rapidly quantify transcript abundances.
We introduce Salmon, a lightweight method for quantifying transcript abundance from RNA–seq reads. Salmon combines a new dual-phase parallel inference algorithm and feature-rich bias models with an ultra-fast read mapping procedure. It is the first transcriptome-wide quantifier to correct for fragment GC-content bias, which, as we demonstrate here, substantially improves the accuracy of abundance estimates and the sensitivity of subsequent differential expression analysis.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>28263959</pmid><doi>10.1038/nmeth.4197</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2017-04, Vol.14 (4), p.417-419 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_proquest_miscellaneous_1875141462 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/114/2415 631/114/794 631/208/212/2019 Abundance Algorithms Base Composition Bayes Theorem Bias Bioinformatics Biological Microscopy Biological Techniques Biomedical Engineering/Biotechnology brief-communication Gene expression Gene Expression Profiling - methods Gene Expression Profiling - statistics & numerical data Life Sciences Proteomics Ribonucleic acid RNA Sensitivity analysis Sequence Analysis, RNA - methods Sequence Analysis, RNA - statistics & numerical data Transcription |
title | Salmon provides fast and bias-aware quantification of transcript expression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-17T23%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salmon%20provides%20fast%20and%20bias-aware%20quantification%20of%20transcript%20expression&rft.jtitle=Nature%20methods&rft.au=Patro,%20Rob&rft.date=2017-04-01&rft.volume=14&rft.issue=4&rft.spage=417&rft.epage=419&rft.pages=417-419&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/nmeth.4197&rft_dat=%3Cproquest_cross%3E1875141462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085792103&rft_id=info:pmid/28263959&rfr_iscdi=true |