Salmon provides fast and bias-aware quantification of transcript expression

Salmon is a computational tool that uses sample-specific models and a dual-phase inference procedure to correct biases in RNA-seq data and rapidly quantify transcript abundances. We introduce Salmon, a lightweight method for quantifying transcript abundance from RNA–seq reads. Salmon combines a new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2017-04, Vol.14 (4), p.417-419
Hauptverfasser: Patro, Rob, Duggal, Geet, Love, Michael I, Irizarry, Rafael A, Kingsford, Carl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Salmon is a computational tool that uses sample-specific models and a dual-phase inference procedure to correct biases in RNA-seq data and rapidly quantify transcript abundances. We introduce Salmon, a lightweight method for quantifying transcript abundance from RNA–seq reads. Salmon combines a new dual-phase parallel inference algorithm and feature-rich bias models with an ultra-fast read mapping procedure. It is the first transcriptome-wide quantifier to correct for fragment GC-content bias, which, as we demonstrate here, substantially improves the accuracy of abundance estimates and the sensitivity of subsequent differential expression analysis.
ISSN:1548-7091
1548-7105
DOI:10.1038/nmeth.4197