Salmon provides fast and bias-aware quantification of transcript expression
Salmon is a computational tool that uses sample-specific models and a dual-phase inference procedure to correct biases in RNA-seq data and rapidly quantify transcript abundances. We introduce Salmon, a lightweight method for quantifying transcript abundance from RNA–seq reads. Salmon combines a new...
Gespeichert in:
Veröffentlicht in: | Nature methods 2017-04, Vol.14 (4), p.417-419 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Salmon is a computational tool that uses sample-specific models and a dual-phase inference procedure to correct biases in RNA-seq data and rapidly quantify transcript abundances.
We introduce Salmon, a lightweight method for quantifying transcript abundance from RNA–seq reads. Salmon combines a new dual-phase parallel inference algorithm and feature-rich bias models with an ultra-fast read mapping procedure. It is the first transcriptome-wide quantifier to correct for fragment GC-content bias, which, as we demonstrate here, substantially improves the accuracy of abundance estimates and the sensitivity of subsequent differential expression analysis. |
---|---|
ISSN: | 1548-7091 1548-7105 |
DOI: | 10.1038/nmeth.4197 |