Uptake of Pb(II) and Cd(II) on Chitosan Microsphere Surface Successively Grafted by Methyl Acrylate and Diethylenetriamine
A novel adsorbent, CS-MA-DETA microspheres, for uptake of heavy metal ions from aqueous solutions was first fabricated via two-step grafting methyl acrylate (MA) and diethylenetriamine (DETA) onto chitosan (CS) microsphere surface in the absence of cross-linkers. CS-MA-DETA microspheres of 3.04 μm i...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-03, Vol.9 (12), p.11144-11155 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel adsorbent, CS-MA-DETA microspheres, for uptake of heavy metal ions from aqueous solutions was first fabricated via two-step grafting methyl acrylate (MA) and diethylenetriamine (DETA) onto chitosan (CS) microsphere surface in the absence of cross-linkers. CS-MA-DETA microspheres of 3.04 μm in mean diameter were of uniformly wrinkle-like topography sketched out by SEM, whose surface after decoration by MA and DETA was stable and beneficial to metal ion capture. Its chemical composition, microstructure, and thermal property were characterized by elemental analysis, FTIR, XRD, BET, and TGA techniques, and the achieved quantitative results mainly included C/N ratio (4.76), crystallinity (31.20%, 19.75% of CS), specific surface area (27.806 m2 g–1), pore diameter (3.452 nm), and mass loss at the first stage (3%, around 10% of CS), which indicated a successful synthesis, well-defined structure, and good thermostability. Adsorption tests of CS-MA-DETA microspheres were performed in Pb(II) and/or Cd(II) solution(s) at various pH values, contact time, and initial concentrations, exhibiting an excellent adsorption capability. Its maximum adsorption capacity calculated by Langmuir model was 239.2 mg Pb(II)/g, or 201.6 mg Cd(II)/g, which was higher than those of most available CS-based adsorbents. Furthermore, several adsorption kinetic and isotherm models were employed to investigate its uptake behavior, implying that it was mainly a monolayer adsorption and chemisorption process. Five-cycle reusability tests demonstrated CS-MA-DETA microspheres could be repeatedly used without significant capacity loss ( |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b00480 |