Downregulation of NPM reverses multidrug resistance in human hepatoma cells via inhibition of P-glycoprotein expression
Multidrug resistance (MDR) is an important issue in current cancer treatments. In human cancer, drug resistance is primarily associated with the overexpression of multidrug resistance gene 1 (MDR1). Therefore, the human MDR1 gene promoter may be a target for anti-MDR drug screening. Numerous methods...
Gespeichert in:
Veröffentlicht in: | Molecular medicine reports 2017-04, Vol.15 (4), p.2360-2368 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multidrug resistance (MDR) is an important issue in current cancer treatments. In human cancer, drug resistance is primarily associated with the overexpression of multidrug resistance gene 1 (MDR1). Therefore, the human MDR1 gene promoter may be a target for anti-MDR drug screening. Numerous methods to prevent MDR have been investigated. However, they have been proven to be clinically ineffective. Therefore, the aim of the present study was to investigate whether downregulation of nucleophosmin (NPM) demonstrates any effects on the reversal of MDR in hepatocellular carcinoma (HCC) cells. In the present study, two in vitro MDR HCC cell lines, HepG2/Adriamycin (ADM) and SMMC7721/ADM, were established and the level of MDR was measured. The results demonstrated that NPM downregulation markedly reversed the effects of MDR in the model used. In addition, NPM downregulation reduced P-glycoprotein expression, as well as MDR1 expression. These results suggested that downregulation of NPM may be a novel and effective method of reversing the effects of MDR, and may be a potential adjuvant for tumor chemotherapy. |
---|---|
ISSN: | 1791-2997 1791-3004 |
DOI: | 10.3892/mmr.2017.6246 |