Purple corn silk: A potential anti-obesity agent with inhibition on adipogenesis and induction on lipolysis and apoptosis in adipocytes

Corn silk or the stigma of Zea mays L. has traditionally been used in weight loss stimulation and treatment of cystitis, urinary infections and obesity. Purple corn silk, rich of polyphenolic substances, was reported on anti-diabetic and anti-obesity effect in animal studies. However, scientific evi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ethnopharmacology 2017-04, Vol.201, p.9-16
Hauptverfasser: Chaiittianan, Rungsiri, Sutthanut, Khaetthareeya, Rattanathongkom, Ariya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Corn silk or the stigma of Zea mays L. has traditionally been used in weight loss stimulation and treatment of cystitis, urinary infections and obesity. Purple corn silk, rich of polyphenolic substances, was reported on anti-diabetic and anti-obesity effect in animal studies. However, scientific evidence on mechanisms and targets of action of purple corn silk related to adipocyte life cycle has been limited. To determine phytochemical compositions and investigate anti-obesity potential of the purple corn silk focusing on interruption of adipocyte life cycle; effect on pre-adipocyte proliferation, adipogenesis, adipocyte lipolysis, and apoptosis. The ethanolic purple corn silk extract (PCS) was prepared and investigated for phytochemical compositions by LC/MS/MS technique and anti-obesity potential using murine 3T3-L1 cell line. Using methyl thiazole tetrazolium (MTT) assay, the effects on pre-adipocytes and adipocyte viability and on pre-adipocytes proliferation at 24-, 48-, and 72-h incubation period were evaluated. In addition, anti-adipogenesis via inhibition on adipocyte differentiation and reduction of total lipid accumulation was evaluated using Oil Red O staining and spectrophotometric methods, respectively. The lipolysis effect was determined by measurement of glycerol released content using glycerol test kit after 48-h treatment of PCS to adipocytes. Apoptosis inductive effect was done by using 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride (DAPI) staining method. The polyphenols including anthocyanins, quercetin and phenolic acids and derivatives were found as the major chemical compositions of the PCS. With multiple-stages interruption on the adipocyte life cycle, anti-obesity effect of PCS was interestingly demonstrated. When compared to the control, the PCS at concentration range between 250–1000 μg/mL showed anti-adipogenesis effect as expressing of significant inhibition on pre-adipocyte proliferation at all incubation period (43.52±5.28 – 75.51±9.09%) and significant decreasing of total lipid accumulation at concentration of 500μg/mL (80.22±6.58%) and 1000μg/mL (69.62±5.42%). Moreover, the PCS exhibited lipolysis and apoptosis inductive effect with dose dependent manner and significance at concentration of 1000μg/mL by increase of released glycerol content (173.88±6.13% of the control) and of nuclei condensing and apoptotic bodies (with relative apoptosis induction as 131.74±1.64% of the control). Our data has evidenced the anti-ob
ISSN:0378-8741
1872-7573
DOI:10.1016/j.jep.2017.02.044