Genetic variation in wood properties of interior spruce. I. Growth, latewood percentage, and wood density

Quantitative genetic variation in growth, latewood percentage, and wood density was investigated for British Columbia's interior spruce (the common name for white spruce, Picea glauca (Moench) Voss; Engelmann spruce, Picea engelmanni Parry ex Engelm.; and their hybrids). The study included 160...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of forest research 2002-12, Vol.32 (12), p.2116-2127
Hauptverfasser: Ivkovich, Milosh, Namkoong, Gene, Koshy, Mathew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantitative genetic variation in growth, latewood percentage, and wood density was investigated for British Columbia's interior spruce (the common name for white spruce, Picea glauca (Moench) Voss; Engelmann spruce, Picea engelmanni Parry ex Engelm.; and their hybrids). The study included 160 half-sib families from the East Kootenay and Prince George regions. At the time of sampling, progeny tests for those two regions were 20 and 22 years old, respectively. Univariate and multivariate restricted maximum likelihood (REML) estimates of genetic parameters were obtained. Estimates of genetic variances and heritabilities differed greatly across planting sites for the examined traits, especially after transplantation between the regions. Significant negative genetic correlation between overall growth and wood density was found for the East Kootenay progenies, while negative but nonsignificant genetic correlation between these traits was found for the Prince George progenies. Generally, there was no significant decrease in heritability for ring width and latewood percentage in successive growth rings. A general age trend for genetic correlation between those traits was not apparent, except that the correlation remained negative during the observed period. Our results show that it is not possible to select certain families as superior based on 1-year results because of the family by growing season interactions. Nevertheless, genetic age–age correlations for cumulative increments were high, having a decreasing trend with increasing difference in age.
ISSN:0045-5067
1208-6037
DOI:10.1139/x02-138