An Evidence Synthesis Approach to Estimating the Proportion of Influenza Among Influenza-like Illness Patients
Estimation of the national-level incidence of seasonal influenza is notoriously challenging. Surveillance of influenza-like illness is carried out in many countries using a variety of data sources, and several methods have been developed to estimate influenza incidence. Our aim was to obtain maximal...
Gespeichert in:
Veröffentlicht in: | Epidemiology (Cambridge, Mass.) Mass.), 2017-07, Vol.28 (4), p.484-491 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Estimation of the national-level incidence of seasonal influenza is notoriously challenging. Surveillance of influenza-like illness is carried out in many countries using a variety of data sources, and several methods have been developed to estimate influenza incidence. Our aim was to obtain maximally informed estimates of the proportion of influenza-like illness that is true influenza using all available data.
We combined data on weekly general practice sentinel surveillance consultation rates for influenza-like illness, virologic testing of sampled patients with influenza-like illness, and positive laboratory tests for influenza and other pathogens, applying Bayesian evidence synthesis to estimate the positive predictive value (PPV) of influenza-like illness as a test for influenza virus infection. We estimated the weekly number of influenza-like illness consultations attributable to influenza for nine influenza seasons, and for four age groups.
The estimated PPV for influenza in influenza-like illness patients was highest in the weeks surrounding seasonal peaks in influenza-like illness rates, dropping to near zero in between-peak periods. Overall, 14.1% (95% credible interval [CrI]: 13.5%, 14.8%) of influenza-like illness consultations were attributed to influenza infection; the estimated PPV was 50% (95% CrI: 48%, 53%) for the peak weeks and 5.8% during the summer periods.
The model quantifies the correspondence between influenza-like illness consultations and influenza at a weekly granularity. Even during peak periods, a substantial proportion of influenza-like illness-61%-was not attributed to influenza. The much lower proportion of influenza outside the peak periods reflects the greater circulation of other respiratory pathogens relative to influenza. |
---|---|
ISSN: | 1044-3983 1531-5487 |
DOI: | 10.1097/EDE.0000000000000646 |