A novel hierarchical selective ensemble classifier with bioinformatics application
Highlights • Feature selection is based on parallel optimization and hierarchical selection. • Maximize the sum of relevance and distance solves problem of high dimensionality. • A multi-class problem can be transformed into a binary classification problem. • Ensemble combination method based on div...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence in medicine 2017-11, Vol.83, p.82-90 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highlights • Feature selection is based on parallel optimization and hierarchical selection. • Maximize the sum of relevance and distance solves problem of high dimensionality. • A multi-class problem can be transformed into a binary classification problem. • Ensemble combination method based on divide-and-conquer strategy is efficient. • Solving bioinformatics problems with high-level performance can be achieved. |
---|---|
ISSN: | 0933-3657 1873-2860 |
DOI: | 10.1016/j.artmed.2017.02.005 |