A novel hierarchical selective ensemble classifier with bioinformatics application

Highlights • Feature selection is based on parallel optimization and hierarchical selection. • Maximize the sum of relevance and distance solves problem of high dimensionality. • A multi-class problem can be transformed into a binary classification problem. • Ensemble combination method based on div...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine 2017-11, Vol.83, p.82-90
Hauptverfasser: Wei, Leyi, Wan, Shixiang, Guo, Jiasheng, Wong, Kelvin KL
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highlights • Feature selection is based on parallel optimization and hierarchical selection. • Maximize the sum of relevance and distance solves problem of high dimensionality. • A multi-class problem can be transformed into a binary classification problem. • Ensemble combination method based on divide-and-conquer strategy is efficient. • Solving bioinformatics problems with high-level performance can be achieved.
ISSN:0933-3657
1873-2860
DOI:10.1016/j.artmed.2017.02.005