Uncoupled Analysis of Stochastic Reaction Networks in Fluctuating Environments: e1003942

The dynamics of stochastic reaction networks within cells are inevitably modulated by factors considered extrinsic to the network such as, for instance, the fluctuations in ribosome copy numbers for a gene regulatory network. While several recent studies demonstrate the importance of accounting for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2014-12, Vol.10 (12)
Hauptverfasser: Zechner, Christoph, Koeppl, Heinz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamics of stochastic reaction networks within cells are inevitably modulated by factors considered extrinsic to the network such as, for instance, the fluctuations in ribosome copy numbers for a gene regulatory network. While several recent studies demonstrate the importance of accounting for such extrinsic components, the resulting models are typically hard to analyze. In this work we develop a general mathematical framework that allows to uncouple the network from its dynamic environment by incorporating only the environment's effect onto the network into a new model. More technically, we show how such fluctuating extrinsic components (e.g., chemical species) can be marginalized in order to obtain this decoupled model. We derive its corresponding process- and master equations and show how stochastic simulations can be performed. Using several case studies, we demonstrate the significance of the approach.
ISSN:1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1003942