Enhanced energy transport in genetically engineered excitonic networks

One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2016-02, Vol.15 (2), p.211-216
Hauptverfasser: Park, Heechul, Heldman, Nimrod, Rebentrost, Patrick, Abbondanza, Luigi, Iagatti, Alessandro, Alessi, Andrea, Patrizi, Barbara, Salvalaggio, Mario, Bussotti, Laura, Mohseni, Masoud, Caruso, Filippo, Johnsen, Hannah C., Fusco, Roberto, Foggi, Paolo, Scudo, Petra F., Lloyd, Seth, Belcher, Angela M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue 2
container_start_page 211
container_title Nature materials
container_volume 15
creator Park, Heechul
Heldman, Nimrod
Rebentrost, Patrick
Abbondanza, Luigi
Iagatti, Alessandro
Alessi, Andrea
Patrizi, Barbara
Salvalaggio, Mario
Bussotti, Laura
Mohseni, Masoud
Caruso, Filippo
Johnsen, Hannah C.
Fusco, Roberto
Foggi, Paolo
Scudo, Petra F.
Lloyd, Seth
Belcher, Angela M.
description One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime. A super-Förster energy-transfer regime, where coherent and incoherent energy transport processes enhance the diffusion of excitons, is observed at room temperature by tuning the distance between the chromophores’ binding sites in a virus scaffold.
doi_str_mv 10.1038/nmat4448
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872825881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1872825881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-c51633305447a595f9d17966557a37a2a95822347544676ed7f3285334c9f5d73</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoVqvgL5ABN7qo5v1YSmlVKLjR9RAzmTF1JlOTGbT_3pS2Kt3oJgn3fJx7bw4AZwheI0jkjW90RymVe-AIUcFHlHO4v3kjhPEAHMc4hxAjxvghGGBOOaJUHIHpxL9qb2yRWW9Dtcy6oH1ctKHLnM-qVOyc0XW9THrlvLVhhX4a17XemSzJH214iyfgoNR1tKebewiep5On8f1o9nj3ML6djQxjuEsn4oQQyFJvzRQrVYGE4pwxoYnQWCsmMSZUJIALbgtREiwZIdSokhWCDMHl2ncR2vfexi5vXDS2rrW3bR9zJAWWmEmJ_kaFIjj9E-X_QDlUCBNFEnqxg87bPvi084oSUKo0-4-hCW2MwZb5IrhGh2WOYL5KLN8mltDzjWH_0tjiG9xGlICrNRCT5CsbfnXcNfsCAqKb6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767089754</pqid></control><display><type>article</type><title>Enhanced energy transport in genetically engineered excitonic networks</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Park, Heechul ; Heldman, Nimrod ; Rebentrost, Patrick ; Abbondanza, Luigi ; Iagatti, Alessandro ; Alessi, Andrea ; Patrizi, Barbara ; Salvalaggio, Mario ; Bussotti, Laura ; Mohseni, Masoud ; Caruso, Filippo ; Johnsen, Hannah C. ; Fusco, Roberto ; Foggi, Paolo ; Scudo, Petra F. ; Lloyd, Seth ; Belcher, Angela M.</creator><creatorcontrib>Park, Heechul ; Heldman, Nimrod ; Rebentrost, Patrick ; Abbondanza, Luigi ; Iagatti, Alessandro ; Alessi, Andrea ; Patrizi, Barbara ; Salvalaggio, Mario ; Bussotti, Laura ; Mohseni, Masoud ; Caruso, Filippo ; Johnsen, Hannah C. ; Fusco, Roberto ; Foggi, Paolo ; Scudo, Petra F. ; Lloyd, Seth ; Belcher, Angela M.</creatorcontrib><description>One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime. A super-Förster energy-transfer regime, where coherent and incoherent energy transport processes enhance the diffusion of excitons, is observed at room temperature by tuning the distance between the chromophores’ binding sites in a virus scaffold.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4448</identifier><identifier>PMID: 26461447</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/125 ; 639/301/54/989 ; 639/638/439/943 ; 639/638/440/948 ; 639/766/483/1139 ; Biological ; Biomaterials ; Computer Simulation ; Condensed Matter Physics ; Dynamical systems ; Dynamics ; Electrochemistry ; Energy conversion ; Energy Transfer ; Excitation ; Genetic Engineering ; Materials Science ; Materials Testing ; Models, Theoretical ; Nanotechnology ; Networks ; Optical and Electronic Materials ; Solar energy ; Spectroscopy ; Spectrum Analysis ; Temperature ; Transport ; Viruses</subject><ispartof>Nature materials, 2016-02, Vol.15 (2), p.211-216</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-c51633305447a595f9d17966557a37a2a95822347544676ed7f3285334c9f5d73</citedby><cites>FETCH-LOGICAL-c552t-c51633305447a595f9d17966557a37a2a95822347544676ed7f3285334c9f5d73</cites><orcidid>0000-0001-6443-0390 ; 0000-0002-8366-4296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat4448$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat4448$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26461447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Heechul</creatorcontrib><creatorcontrib>Heldman, Nimrod</creatorcontrib><creatorcontrib>Rebentrost, Patrick</creatorcontrib><creatorcontrib>Abbondanza, Luigi</creatorcontrib><creatorcontrib>Iagatti, Alessandro</creatorcontrib><creatorcontrib>Alessi, Andrea</creatorcontrib><creatorcontrib>Patrizi, Barbara</creatorcontrib><creatorcontrib>Salvalaggio, Mario</creatorcontrib><creatorcontrib>Bussotti, Laura</creatorcontrib><creatorcontrib>Mohseni, Masoud</creatorcontrib><creatorcontrib>Caruso, Filippo</creatorcontrib><creatorcontrib>Johnsen, Hannah C.</creatorcontrib><creatorcontrib>Fusco, Roberto</creatorcontrib><creatorcontrib>Foggi, Paolo</creatorcontrib><creatorcontrib>Scudo, Petra F.</creatorcontrib><creatorcontrib>Lloyd, Seth</creatorcontrib><creatorcontrib>Belcher, Angela M.</creatorcontrib><title>Enhanced energy transport in genetically engineered excitonic networks</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime. A super-Förster energy-transfer regime, where coherent and incoherent energy transport processes enhance the diffusion of excitons, is observed at room temperature by tuning the distance between the chromophores’ binding sites in a virus scaffold.</description><subject>119/118</subject><subject>140/125</subject><subject>639/301/54/989</subject><subject>639/638/439/943</subject><subject>639/638/440/948</subject><subject>639/766/483/1139</subject><subject>Biological</subject><subject>Biomaterials</subject><subject>Computer Simulation</subject><subject>Condensed Matter Physics</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electrochemistry</subject><subject>Energy conversion</subject><subject>Energy Transfer</subject><subject>Excitation</subject><subject>Genetic Engineering</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Models, Theoretical</subject><subject>Nanotechnology</subject><subject>Networks</subject><subject>Optical and Electronic Materials</subject><subject>Solar energy</subject><subject>Spectroscopy</subject><subject>Spectrum Analysis</subject><subject>Temperature</subject><subject>Transport</subject><subject>Viruses</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtLAzEUhYMoVqvgL5ABN7qo5v1YSmlVKLjR9RAzmTF1JlOTGbT_3pS2Kt3oJgn3fJx7bw4AZwheI0jkjW90RymVe-AIUcFHlHO4v3kjhPEAHMc4hxAjxvghGGBOOaJUHIHpxL9qb2yRWW9Dtcy6oH1ctKHLnM-qVOyc0XW9THrlvLVhhX4a17XemSzJH214iyfgoNR1tKebewiep5On8f1o9nj3ML6djQxjuEsn4oQQyFJvzRQrVYGE4pwxoYnQWCsmMSZUJIALbgtREiwZIdSokhWCDMHl2ncR2vfexi5vXDS2rrW3bR9zJAWWmEmJ_kaFIjj9E-X_QDlUCBNFEnqxg87bPvi084oSUKo0-4-hCW2MwZb5IrhGh2WOYL5KLN8mltDzjWH_0tjiG9xGlICrNRCT5CsbfnXcNfsCAqKb6w</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Park, Heechul</creator><creator>Heldman, Nimrod</creator><creator>Rebentrost, Patrick</creator><creator>Abbondanza, Luigi</creator><creator>Iagatti, Alessandro</creator><creator>Alessi, Andrea</creator><creator>Patrizi, Barbara</creator><creator>Salvalaggio, Mario</creator><creator>Bussotti, Laura</creator><creator>Mohseni, Masoud</creator><creator>Caruso, Filippo</creator><creator>Johnsen, Hannah C.</creator><creator>Fusco, Roberto</creator><creator>Foggi, Paolo</creator><creator>Scudo, Petra F.</creator><creator>Lloyd, Seth</creator><creator>Belcher, Angela M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-6443-0390</orcidid><orcidid>https://orcid.org/0000-0002-8366-4296</orcidid></search><sort><creationdate>20160201</creationdate><title>Enhanced energy transport in genetically engineered excitonic networks</title><author>Park, Heechul ; Heldman, Nimrod ; Rebentrost, Patrick ; Abbondanza, Luigi ; Iagatti, Alessandro ; Alessi, Andrea ; Patrizi, Barbara ; Salvalaggio, Mario ; Bussotti, Laura ; Mohseni, Masoud ; Caruso, Filippo ; Johnsen, Hannah C. ; Fusco, Roberto ; Foggi, Paolo ; Scudo, Petra F. ; Lloyd, Seth ; Belcher, Angela M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-c51633305447a595f9d17966557a37a2a95822347544676ed7f3285334c9f5d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>119/118</topic><topic>140/125</topic><topic>639/301/54/989</topic><topic>639/638/439/943</topic><topic>639/638/440/948</topic><topic>639/766/483/1139</topic><topic>Biological</topic><topic>Biomaterials</topic><topic>Computer Simulation</topic><topic>Condensed Matter Physics</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electrochemistry</topic><topic>Energy conversion</topic><topic>Energy Transfer</topic><topic>Excitation</topic><topic>Genetic Engineering</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Models, Theoretical</topic><topic>Nanotechnology</topic><topic>Networks</topic><topic>Optical and Electronic Materials</topic><topic>Solar energy</topic><topic>Spectroscopy</topic><topic>Spectrum Analysis</topic><topic>Temperature</topic><topic>Transport</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Heechul</creatorcontrib><creatorcontrib>Heldman, Nimrod</creatorcontrib><creatorcontrib>Rebentrost, Patrick</creatorcontrib><creatorcontrib>Abbondanza, Luigi</creatorcontrib><creatorcontrib>Iagatti, Alessandro</creatorcontrib><creatorcontrib>Alessi, Andrea</creatorcontrib><creatorcontrib>Patrizi, Barbara</creatorcontrib><creatorcontrib>Salvalaggio, Mario</creatorcontrib><creatorcontrib>Bussotti, Laura</creatorcontrib><creatorcontrib>Mohseni, Masoud</creatorcontrib><creatorcontrib>Caruso, Filippo</creatorcontrib><creatorcontrib>Johnsen, Hannah C.</creatorcontrib><creatorcontrib>Fusco, Roberto</creatorcontrib><creatorcontrib>Foggi, Paolo</creatorcontrib><creatorcontrib>Scudo, Petra F.</creatorcontrib><creatorcontrib>Lloyd, Seth</creatorcontrib><creatorcontrib>Belcher, Angela M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Heechul</au><au>Heldman, Nimrod</au><au>Rebentrost, Patrick</au><au>Abbondanza, Luigi</au><au>Iagatti, Alessandro</au><au>Alessi, Andrea</au><au>Patrizi, Barbara</au><au>Salvalaggio, Mario</au><au>Bussotti, Laura</au><au>Mohseni, Masoud</au><au>Caruso, Filippo</au><au>Johnsen, Hannah C.</au><au>Fusco, Roberto</au><au>Foggi, Paolo</au><au>Scudo, Petra F.</au><au>Lloyd, Seth</au><au>Belcher, Angela M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced energy transport in genetically engineered excitonic networks</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>15</volume><issue>2</issue><spage>211</spage><epage>216</epage><pages>211-216</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime. A super-Förster energy-transfer regime, where coherent and incoherent energy transport processes enhance the diffusion of excitons, is observed at room temperature by tuning the distance between the chromophores’ binding sites in a virus scaffold.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26461447</pmid><doi>10.1038/nmat4448</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6443-0390</orcidid><orcidid>https://orcid.org/0000-0002-8366-4296</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2016-02, Vol.15 (2), p.211-216
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1872825881
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 119/118
140/125
639/301/54/989
639/638/439/943
639/638/440/948
639/766/483/1139
Biological
Biomaterials
Computer Simulation
Condensed Matter Physics
Dynamical systems
Dynamics
Electrochemistry
Energy conversion
Energy Transfer
Excitation
Genetic Engineering
Materials Science
Materials Testing
Models, Theoretical
Nanotechnology
Networks
Optical and Electronic Materials
Solar energy
Spectroscopy
Spectrum Analysis
Temperature
Transport
Viruses
title Enhanced energy transport in genetically engineered excitonic networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A20%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20energy%20transport%20in%20genetically%20engineered%20excitonic%20networks&rft.jtitle=Nature%20materials&rft.au=Park,%20Heechul&rft.date=2016-02-01&rft.volume=15&rft.issue=2&rft.spage=211&rft.epage=216&rft.pages=211-216&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4448&rft_dat=%3Cproquest_cross%3E1872825881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767089754&rft_id=info:pmid/26461447&rfr_iscdi=true