Enhanced energy transport in genetically engineered excitonic networks
One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using ge...
Gespeichert in:
Veröffentlicht in: | Nature materials 2016-02, Vol.15 (2), p.211-216 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 216 |
---|---|
container_issue | 2 |
container_start_page | 211 |
container_title | Nature materials |
container_volume | 15 |
creator | Park, Heechul Heldman, Nimrod Rebentrost, Patrick Abbondanza, Luigi Iagatti, Alessandro Alessi, Andrea Patrizi, Barbara Salvalaggio, Mario Bussotti, Laura Mohseni, Masoud Caruso, Filippo Johnsen, Hannah C. Fusco, Roberto Foggi, Paolo Scudo, Petra F. Lloyd, Seth Belcher, Angela M. |
description | One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.
A super-Förster energy-transfer regime, where coherent and incoherent energy transport processes enhance the diffusion of excitons, is observed at room temperature by tuning the distance between the chromophores’ binding sites in a virus scaffold. |
doi_str_mv | 10.1038/nmat4448 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872825881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1872825881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-c51633305447a595f9d17966557a37a2a95822347544676ed7f3285334c9f5d73</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoVqvgL5ABN7qo5v1YSmlVKLjR9RAzmTF1JlOTGbT_3pS2Kt3oJgn3fJx7bw4AZwheI0jkjW90RymVe-AIUcFHlHO4v3kjhPEAHMc4hxAjxvghGGBOOaJUHIHpxL9qb2yRWW9Dtcy6oH1ctKHLnM-qVOyc0XW9THrlvLVhhX4a17XemSzJH214iyfgoNR1tKebewiep5On8f1o9nj3ML6djQxjuEsn4oQQyFJvzRQrVYGE4pwxoYnQWCsmMSZUJIALbgtREiwZIdSokhWCDMHl2ncR2vfexi5vXDS2rrW3bR9zJAWWmEmJ_kaFIjj9E-X_QDlUCBNFEnqxg87bPvi084oSUKo0-4-hCW2MwZb5IrhGh2WOYL5KLN8mltDzjWH_0tjiG9xGlICrNRCT5CsbfnXcNfsCAqKb6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767089754</pqid></control><display><type>article</type><title>Enhanced energy transport in genetically engineered excitonic networks</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Park, Heechul ; Heldman, Nimrod ; Rebentrost, Patrick ; Abbondanza, Luigi ; Iagatti, Alessandro ; Alessi, Andrea ; Patrizi, Barbara ; Salvalaggio, Mario ; Bussotti, Laura ; Mohseni, Masoud ; Caruso, Filippo ; Johnsen, Hannah C. ; Fusco, Roberto ; Foggi, Paolo ; Scudo, Petra F. ; Lloyd, Seth ; Belcher, Angela M.</creator><creatorcontrib>Park, Heechul ; Heldman, Nimrod ; Rebentrost, Patrick ; Abbondanza, Luigi ; Iagatti, Alessandro ; Alessi, Andrea ; Patrizi, Barbara ; Salvalaggio, Mario ; Bussotti, Laura ; Mohseni, Masoud ; Caruso, Filippo ; Johnsen, Hannah C. ; Fusco, Roberto ; Foggi, Paolo ; Scudo, Petra F. ; Lloyd, Seth ; Belcher, Angela M.</creatorcontrib><description>One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.
A super-Förster energy-transfer regime, where coherent and incoherent energy transport processes enhance the diffusion of excitons, is observed at room temperature by tuning the distance between the chromophores’ binding sites in a virus scaffold.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4448</identifier><identifier>PMID: 26461447</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/125 ; 639/301/54/989 ; 639/638/439/943 ; 639/638/440/948 ; 639/766/483/1139 ; Biological ; Biomaterials ; Computer Simulation ; Condensed Matter Physics ; Dynamical systems ; Dynamics ; Electrochemistry ; Energy conversion ; Energy Transfer ; Excitation ; Genetic Engineering ; Materials Science ; Materials Testing ; Models, Theoretical ; Nanotechnology ; Networks ; Optical and Electronic Materials ; Solar energy ; Spectroscopy ; Spectrum Analysis ; Temperature ; Transport ; Viruses</subject><ispartof>Nature materials, 2016-02, Vol.15 (2), p.211-216</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-c51633305447a595f9d17966557a37a2a95822347544676ed7f3285334c9f5d73</citedby><cites>FETCH-LOGICAL-c552t-c51633305447a595f9d17966557a37a2a95822347544676ed7f3285334c9f5d73</cites><orcidid>0000-0001-6443-0390 ; 0000-0002-8366-4296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat4448$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat4448$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26461447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Heechul</creatorcontrib><creatorcontrib>Heldman, Nimrod</creatorcontrib><creatorcontrib>Rebentrost, Patrick</creatorcontrib><creatorcontrib>Abbondanza, Luigi</creatorcontrib><creatorcontrib>Iagatti, Alessandro</creatorcontrib><creatorcontrib>Alessi, Andrea</creatorcontrib><creatorcontrib>Patrizi, Barbara</creatorcontrib><creatorcontrib>Salvalaggio, Mario</creatorcontrib><creatorcontrib>Bussotti, Laura</creatorcontrib><creatorcontrib>Mohseni, Masoud</creatorcontrib><creatorcontrib>Caruso, Filippo</creatorcontrib><creatorcontrib>Johnsen, Hannah C.</creatorcontrib><creatorcontrib>Fusco, Roberto</creatorcontrib><creatorcontrib>Foggi, Paolo</creatorcontrib><creatorcontrib>Scudo, Petra F.</creatorcontrib><creatorcontrib>Lloyd, Seth</creatorcontrib><creatorcontrib>Belcher, Angela M.</creatorcontrib><title>Enhanced energy transport in genetically engineered excitonic networks</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.
A super-Förster energy-transfer regime, where coherent and incoherent energy transport processes enhance the diffusion of excitons, is observed at room temperature by tuning the distance between the chromophores’ binding sites in a virus scaffold.</description><subject>119/118</subject><subject>140/125</subject><subject>639/301/54/989</subject><subject>639/638/439/943</subject><subject>639/638/440/948</subject><subject>639/766/483/1139</subject><subject>Biological</subject><subject>Biomaterials</subject><subject>Computer Simulation</subject><subject>Condensed Matter Physics</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electrochemistry</subject><subject>Energy conversion</subject><subject>Energy Transfer</subject><subject>Excitation</subject><subject>Genetic Engineering</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Models, Theoretical</subject><subject>Nanotechnology</subject><subject>Networks</subject><subject>Optical and Electronic Materials</subject><subject>Solar energy</subject><subject>Spectroscopy</subject><subject>Spectrum Analysis</subject><subject>Temperature</subject><subject>Transport</subject><subject>Viruses</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtLAzEUhYMoVqvgL5ABN7qo5v1YSmlVKLjR9RAzmTF1JlOTGbT_3pS2Kt3oJgn3fJx7bw4AZwheI0jkjW90RymVe-AIUcFHlHO4v3kjhPEAHMc4hxAjxvghGGBOOaJUHIHpxL9qb2yRWW9Dtcy6oH1ctKHLnM-qVOyc0XW9THrlvLVhhX4a17XemSzJH214iyfgoNR1tKebewiep5On8f1o9nj3ML6djQxjuEsn4oQQyFJvzRQrVYGE4pwxoYnQWCsmMSZUJIALbgtREiwZIdSokhWCDMHl2ncR2vfexi5vXDS2rrW3bR9zJAWWmEmJ_kaFIjj9E-X_QDlUCBNFEnqxg87bPvi084oSUKo0-4-hCW2MwZb5IrhGh2WOYL5KLN8mltDzjWH_0tjiG9xGlICrNRCT5CsbfnXcNfsCAqKb6w</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Park, Heechul</creator><creator>Heldman, Nimrod</creator><creator>Rebentrost, Patrick</creator><creator>Abbondanza, Luigi</creator><creator>Iagatti, Alessandro</creator><creator>Alessi, Andrea</creator><creator>Patrizi, Barbara</creator><creator>Salvalaggio, Mario</creator><creator>Bussotti, Laura</creator><creator>Mohseni, Masoud</creator><creator>Caruso, Filippo</creator><creator>Johnsen, Hannah C.</creator><creator>Fusco, Roberto</creator><creator>Foggi, Paolo</creator><creator>Scudo, Petra F.</creator><creator>Lloyd, Seth</creator><creator>Belcher, Angela M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-6443-0390</orcidid><orcidid>https://orcid.org/0000-0002-8366-4296</orcidid></search><sort><creationdate>20160201</creationdate><title>Enhanced energy transport in genetically engineered excitonic networks</title><author>Park, Heechul ; Heldman, Nimrod ; Rebentrost, Patrick ; Abbondanza, Luigi ; Iagatti, Alessandro ; Alessi, Andrea ; Patrizi, Barbara ; Salvalaggio, Mario ; Bussotti, Laura ; Mohseni, Masoud ; Caruso, Filippo ; Johnsen, Hannah C. ; Fusco, Roberto ; Foggi, Paolo ; Scudo, Petra F. ; Lloyd, Seth ; Belcher, Angela M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-c51633305447a595f9d17966557a37a2a95822347544676ed7f3285334c9f5d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>119/118</topic><topic>140/125</topic><topic>639/301/54/989</topic><topic>639/638/439/943</topic><topic>639/638/440/948</topic><topic>639/766/483/1139</topic><topic>Biological</topic><topic>Biomaterials</topic><topic>Computer Simulation</topic><topic>Condensed Matter Physics</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electrochemistry</topic><topic>Energy conversion</topic><topic>Energy Transfer</topic><topic>Excitation</topic><topic>Genetic Engineering</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Models, Theoretical</topic><topic>Nanotechnology</topic><topic>Networks</topic><topic>Optical and Electronic Materials</topic><topic>Solar energy</topic><topic>Spectroscopy</topic><topic>Spectrum Analysis</topic><topic>Temperature</topic><topic>Transport</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Heechul</creatorcontrib><creatorcontrib>Heldman, Nimrod</creatorcontrib><creatorcontrib>Rebentrost, Patrick</creatorcontrib><creatorcontrib>Abbondanza, Luigi</creatorcontrib><creatorcontrib>Iagatti, Alessandro</creatorcontrib><creatorcontrib>Alessi, Andrea</creatorcontrib><creatorcontrib>Patrizi, Barbara</creatorcontrib><creatorcontrib>Salvalaggio, Mario</creatorcontrib><creatorcontrib>Bussotti, Laura</creatorcontrib><creatorcontrib>Mohseni, Masoud</creatorcontrib><creatorcontrib>Caruso, Filippo</creatorcontrib><creatorcontrib>Johnsen, Hannah C.</creatorcontrib><creatorcontrib>Fusco, Roberto</creatorcontrib><creatorcontrib>Foggi, Paolo</creatorcontrib><creatorcontrib>Scudo, Petra F.</creatorcontrib><creatorcontrib>Lloyd, Seth</creatorcontrib><creatorcontrib>Belcher, Angela M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Heechul</au><au>Heldman, Nimrod</au><au>Rebentrost, Patrick</au><au>Abbondanza, Luigi</au><au>Iagatti, Alessandro</au><au>Alessi, Andrea</au><au>Patrizi, Barbara</au><au>Salvalaggio, Mario</au><au>Bussotti, Laura</au><au>Mohseni, Masoud</au><au>Caruso, Filippo</au><au>Johnsen, Hannah C.</au><au>Fusco, Roberto</au><au>Foggi, Paolo</au><au>Scudo, Petra F.</au><au>Lloyd, Seth</au><au>Belcher, Angela M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced energy transport in genetically engineered excitonic networks</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>15</volume><issue>2</issue><spage>211</spage><epage>216</epage><pages>211-216</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.
A super-Förster energy-transfer regime, where coherent and incoherent energy transport processes enhance the diffusion of excitons, is observed at room temperature by tuning the distance between the chromophores’ binding sites in a virus scaffold.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26461447</pmid><doi>10.1038/nmat4448</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6443-0390</orcidid><orcidid>https://orcid.org/0000-0002-8366-4296</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2016-02, Vol.15 (2), p.211-216 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1872825881 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 119/118 140/125 639/301/54/989 639/638/439/943 639/638/440/948 639/766/483/1139 Biological Biomaterials Computer Simulation Condensed Matter Physics Dynamical systems Dynamics Electrochemistry Energy conversion Energy Transfer Excitation Genetic Engineering Materials Science Materials Testing Models, Theoretical Nanotechnology Networks Optical and Electronic Materials Solar energy Spectroscopy Spectrum Analysis Temperature Transport Viruses |
title | Enhanced energy transport in genetically engineered excitonic networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A20%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20energy%20transport%20in%20genetically%20engineered%20excitonic%20networks&rft.jtitle=Nature%20materials&rft.au=Park,%20Heechul&rft.date=2016-02-01&rft.volume=15&rft.issue=2&rft.spage=211&rft.epage=216&rft.pages=211-216&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4448&rft_dat=%3Cproquest_cross%3E1872825881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767089754&rft_id=info:pmid/26461447&rfr_iscdi=true |