Enhanced energy transport in genetically engineered excitonic networks

One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2016-02, Vol.15 (2), p.211-216
Hauptverfasser: Park, Heechul, Heldman, Nimrod, Rebentrost, Patrick, Abbondanza, Luigi, Iagatti, Alessandro, Alessi, Andrea, Patrizi, Barbara, Salvalaggio, Mario, Bussotti, Laura, Mohseni, Masoud, Caruso, Filippo, Johnsen, Hannah C., Fusco, Roberto, Foggi, Paolo, Scudo, Petra F., Lloyd, Seth, Belcher, Angela M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime. A super-Förster energy-transfer regime, where coherent and incoherent energy transport processes enhance the diffusion of excitons, is observed at room temperature by tuning the distance between the chromophores’ binding sites in a virus scaffold.
ISSN:1476-1122
1476-4660
DOI:10.1038/nmat4448