Enhanced energy transport in genetically engineered excitonic networks
One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using ge...
Gespeichert in:
Veröffentlicht in: | Nature materials 2016-02, Vol.15 (2), p.211-216 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.
A super-Förster energy-transfer regime, where coherent and incoherent energy transport processes enhance the diffusion of excitons, is observed at room temperature by tuning the distance between the chromophores’ binding sites in a virus scaffold. |
---|---|
ISSN: | 1476-1122 1476-4660 |
DOI: | 10.1038/nmat4448 |