Novel mRNA molecules are induced in hypertrophied ventricles of carnitine-deficient mice and belong to a family of up-regulated gene in cells overexpressing c-erbB-2
To clarify the pathogenesis of cardiac hypertrophy in carnitine-deficient juvenile visceral steatosis (JVS) mice, we performed differential mRNA display analysis with the ventricles of control and JVS mice. We found a novel up-regulated gene, designated as carnitine deficiency-associated gene expres...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta 2002-09, Vol.1577 (3), p.437-444 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To clarify the pathogenesis of cardiac hypertrophy in carnitine-deficient juvenile visceral steatosis (JVS) mice, we performed differential mRNA display analysis with the ventricles of control and JVS mice. We found a novel up-regulated gene, designated as
carnitine
deficiency-associated gene expressed in
ventricle (CDV)-3. Northern blot analysis with a cDNA probe derived from the novel gene revealed two substantial mRNA species of prominent 4.1- and faint 3.5-kb in examined tissues of control and JVS mice. In spite of their widely expressed features, up-regulation of the gene was found predominantly in the ventricles and slightly in the auricles and skeletal muscles of JVS mice. The up-regulation of CDV-3 gene in the ventricles of JVS mice was significantly relieved by carnitine administration within 6 h. The entire cDNA nucleotide sequences showed that two kinds of cDNA, long and short versions (CDV-3A and -3B), corresponding to the detected mRNAs, are different in a 711 base fragment. Analysis of genomic DNA revealed that the two mRNAs were derived from a single CDV-3 gene with five exons by alternative splicing. The deduced amino acid sequences indicated that the isoforms consist of 236 and 281 residues, differing at regions near the carboxy-terminus but sharing 231 residues of the amino-terminal regions. A BLAST search revealed that they show a high similarity to a human predicted nuclear protein (H41), which has been reported to be up-regulated in breast cancer cells overexpressing cellular-erythroblastosis B-2 (c-erbB-2, a kind of tyrosine kinase).
We report the identification and characterization of novel transcripts that may be involved in the development of cardiac hypertrophy caused by carnitine deficiency. |
---|---|
ISSN: | 0167-4781 0006-3002 1879-2634 |
DOI: | 10.1016/S0167-4781(02)00447-5 |