Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells

Hybrid organic–inorganic perovskites based on methylammonium lead (MAPbI3) are an emerging material with great potential for high-performance and low-cost photovoltaics. However, for perovskites to become a competitive and reliable solar cell technology their instability and spatial variation must b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2017-04, Vol.17 (4), p.2554-2560
Hauptverfasser: Garrett, Joseph L, Tennyson, Elizabeth M, Hu, Miao, Huang, Jinsong, Munday, Jeremy N, Leite, Marina S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybrid organic–inorganic perovskites based on methylammonium lead (MAPbI3) are an emerging material with great potential for high-performance and low-cost photovoltaics. However, for perovskites to become a competitive and reliable solar cell technology their instability and spatial variation must be understood and controlled. While the macroscopic characterization of the devices as a function of time is very informative, a nanoscale identification of their real-time local optoelectronic response is still missing. Here, we implement a four-dimensional imaging method through illuminated heterodyne Kelvin probe force microscopy to spatially (300 mV under 1-sun illumination. Surprisingly, regions of voltage that relax in seconds and after several minutes consistently coexist. Time-dependent changes of the local V oc are likely due to intragrain ion migration and are reversible at low injection level. These results show for the first time the real-time transient behavior of the V oc in perovskite solar cells at the nanoscale. Understanding and controlling the light-induced electrical changes that affect device performance are critical to the further development of stable perovskite-based solar technologies.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.7b00289