Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system

Trace heavy metals accumulated in iron corrosion scales within a drinking water distribution system (DWDS) could potentially be released to bulk water and consequently deteriorate the tap water quality. The objective of this study was to identify and evaluate the release of trace heavy metals in DWD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2017-05, Vol.114, p.69-77
Hauptverfasser: Sun, Huifang, Shi, Baoyou, Yang, Fan, Wang, Dongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Trace heavy metals accumulated in iron corrosion scales within a drinking water distribution system (DWDS) could potentially be released to bulk water and consequently deteriorate the tap water quality. The objective of this study was to identify and evaluate the release of trace heavy metals in DWDS under changing source water conditions. Experimental pipe loops with different iron corrosion scales were set up to simulate the actual DWDS. The effects of sulfate levels on heavy metal release were systemically investigated. Heavy metal releases of Mn, Ni, Cu, Pb, Cr and As could be rapidly triggered by sulfate addition but the releases slowly decreased over time. Heavy metal release was more severe in pipes transporting groundwater (GW) than in pipes transporting surface water (SW). There were strong positive correlations (R2 > 0.8) between the releases of Fe and Mn, Fe and Ni, Fe and Cu, and Fe and Pb. When switching to higher sulfate water, iron corrosion scales in all pipe loops tended to be more stable (especially in pipes transporting GW), with a larger proportion of stable constituents (mainly Fe3O4) and fewer unstable compounds (β-FeOOH, γ-FeOOH, FeCO3 and amorphous iron oxides). The main functional iron reducing bacteria (IRB) communities were favorable for the formation of Fe3O4. The transformation of corrosion scales and the growth of sulfate reducing bacteria (SRB) accounted for the gradually reduced heavy metal release with time. The higher metal release in pipes transporting GW could be due to increased Fe6(OH)12CO3 content under higher sulfate concentrations. [Display omitted] •Sulfate could trigger heavy metal release from iron corrosion scales.•Strong correlations exist between the releases of total iron and heavy metals.•Heavy metals release decrease slowly over time after sudden increase by sulfate.•Corrosion scale stabilization and SRB growth inhibit heavy metals release.
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2017.02.021