The atheroma plaque secretome stimulates the mobilization of endothelial progenitor cells ex vivo

Abstract Endothelial progenitor cells (EPCs) constitute a promising alternative in cardiovascular regenerative medicine due to their assigned role in angiogenesis and vascular repair. In response to injury, EPCs promote vascular remodeling by replacement of damaged endothelial cells and/or by secret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular and cellular cardiology 2017-04, Vol.105, p.12-23
Hauptverfasser: Vega, Francisco M, Gautier, Violette, Fernandez-Ponce, Cecilia M, Jesús Extremera, Mª, Maarten Altelaar, A.F, Millan, Jaime, Tellez, Juan C, Hernandez-Campos, Jose A, Conejero, Rosario, Bolivar, Jorge, Pardal, Ricardo, Garcia-Cózar, Francisco J, Aguado, Enrique, Heck, Albert J.R, Duran-Ruiz, Mª Carmen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Endothelial progenitor cells (EPCs) constitute a promising alternative in cardiovascular regenerative medicine due to their assigned role in angiogenesis and vascular repair. In response to injury, EPCs promote vascular remodeling by replacement of damaged endothelial cells and/or by secreting angiogenic factors over the damaged tissue. Nevertheless, such mechanisms need to be further characterized. In the current approach we have evaluated the initial response of early EPCs (eEPCs) from healthy individuals after direct contact with the factors released by carotid arteries complicated with atherosclerotic plaques (AP), in order to understand the mechanisms underlying the neovascularization and remodeling properties assigned to these cells. Herein, we found that the AP secretome stimulated eEPCs proliferation and mobilization ex vivo , and such increase was accompanied by augmented permeability, cell contraction and also an increase of cell-cell adhesion in association with raised vinculin levels. Furthermore, a comparative mass spectrometry analysis of control versus stimulated eEPCs revealed a differential expression of proteins in the AP treated cells, mostly involved in cell migration, proliferation and vascular remodeling. Some of these protein changes were also detected in the eEPCs isolated from atherosclerotic patients compared to eEPCs from healthy donors. We have shown, for the first time, that the AP released factors activate eEPCs ex vivo by inducing their mobilization together with the expression of vasculogenic related markers. The present approach could be taken as a ex vivo model to study the initial activation of vascular cells in atherosclerosis and also to evaluate strategies looking to potentiate the mobilization of EPCs prior to clinical applications.
ISSN:0022-2828
1095-8584
DOI:10.1016/j.yjmcc.2017.02.001