Identification of a 34 Amino Acid Stretch within the C-Terminus of Histone H1 As the DNA-Condensing Domain by Site-Directed Mutagenesis

The C-terminus of histone H1 is necessary for the folding of polynucleosomal arrays into higher-order structure(s) and contains octapeptide repeats each having DNA binding S/TPKK motifs. These repeat motifs were earlier shown to mimic the DNA/chromatin-condensing properties of the C-terminus of hist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2002-06, Vol.41 (24), p.7617-7627
Hauptverfasser: Bharath, M. M. Srinivas, Ramesh, Sneha, Chandra, Nagasuma R, Rao, M. R. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The C-terminus of histone H1 is necessary for the folding of polynucleosomal arrays into higher-order structure(s) and contains octapeptide repeats each having DNA binding S/TPKK motifs. These repeat motifs were earlier shown to mimic the DNA/chromatin-condensing properties of the C-terminus of histone H1 (Khadake, J. R., and Rao, M. R. S. (1995) Biochemistry 36, 1041−1051). In the present study, we have generated a series of C-terminal mutants of rat histone H1d and studied their DNA-condensation properties. The single proline to alanine mutation in the S/TPKK motifs either singly or in combination resulted in only a 20% decrease in the DNA-condensation property of histone H1. Deletion of all the three S/TPKK motifs resulted in a 45% decrease in DNA condensation. When the three octapeptide repeats encompassing the S/TPKK motifs were deleted, there was again a 45% decrease in DNA condensation. On the other hand, when the entire 34 amino acid stretch (residue 145−178) was deleted, there was nearly a 90% decrease in DNA condensation brought about by histone H1d. Interestingly, deletion of the 10 amino acid spacer between the octapeptide repeats (residues 161−170) also reduced the DNA condensation by 70%. Deletion of the region (residues 115−141) immediately before the 34 amino acid stretch and after the globular domain and the region (residues 184−218) immediately after the 34 amino acid stretch had only a marginal effect on DNA condensation. The importance of the 34 amino acid stretch, including the 10 amino acid spacer, was also demonstrated with the recombinant histone H1d C-terminus. We have also determined the induced α-helicity of histone H1 and its various mutants in the presence of 60% trifluoroethanol, and the experimentally determined induced helical contents agree with the theoretical predictions of secondary structural elements in the C-terminus of histone H1d. Thus, we have identified a 34 amino acid stretch in the C-terminus of histone H1d as the DNA-condensing domain.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi025773+