In vitro combination therapy with isavuconazole against Candida spp
Abstract Combination therapy may be an alternative therapeutic approach for difficult-to-treat Candida infections with the aim of increasing efficacy of antifungal therapy. Whether isavuconazole, an extended-spectrum triazole, possesses synergistic activity in combination therapy with echinocandins...
Gespeichert in:
Veröffentlicht in: | Medical mycology (Oxford) 2017-11, Vol.55 (8), p.859-868 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Combination therapy may be an alternative therapeutic approach for difficult-to-treat Candida infections with the aim of increasing efficacy of antifungal therapy. Whether isavuconazole, an extended-spectrum triazole, possesses synergistic activity in combination therapy with echinocandins or polyenes for the treatment of invasive candidiasis has not been studied. We used Bliss independence drug interaction analysis and time-kill assays to examine the in vitro interactions of isavuconazole with amphotericin B or micafungin, an echinocandin, against strains of Candida albicans, Candida parapsilosis, Candida glabrata, Candida tropicalis, and Candida krusei. The Bliss independence-based drug interactions modeling showed that the combination of isavuconazole and micafungin resulted in synergistic interactions against C. albicans, C. parapsilosis, and C. krusei. The degree of synergy ranged from 1.8% to 16.7% (mean %ΔΕ value) with the highest synergy occurring against C. albicans (⊙SYN% = 8.8%–110%). Time-kill assays showed that the isavuconazole-micafungin combination demonstrated concentration-depended synergy against C. albicans and C. parapsilosis. The combined interaction by Bliss analysis between isavuconazole and amphotericin B was indifferent for C. albicans, C. parapsilosis, and C. tropicalis while for C. glabrata was antagonistic (−2% to −6%) and C. krusei synergistic (3.4% to 7%). The combination of isavuconazole-amphotericin B by time-kill assay was antagonistic against C. krusei and C. glabrata. Collectively, our findings demonstrate that combinations of isavuconazole and micafungin are synergistic against Candida spp., while those of isavuconazole and amphotericin B are indifferent in vitro. |
---|---|
ISSN: | 1369-3786 1460-2709 |
DOI: | 10.1093/mmy/myx006 |