Convergence to travelling waves in Fisher’s population genetics model with a non-Lipschitzian reaction term
We consider a one-dimensional population genetics model for the advance of an advantageous gene. The model is described by the semilinear Fisher equation with unbalanced bistable non-Lipschitzian nonlinearity f ( u ). The “nonsmoothness” of f allows for the appearance of travelling waves with a new,...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical biology 2017-10, Vol.75 (4), p.929-972 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a one-dimensional population genetics model for the advance of an advantageous gene. The model is described by the semilinear Fisher equation with unbalanced bistable
non-Lipschitzian
nonlinearity
f
(
u
). The “nonsmoothness” of
f
allows for the appearance of travelling waves with a new, more realistic profile. We study existence, uniqueness, and long-time asymptotic behavior of the solutions
u
(
x
,
t
),
(
x
,
t
)
∈
R
×
R
+
. We prove also the existence and uniqueness (up to a spatial shift) of a travelling wave
U
. Our main result is the uniform convergence (for
x
∈
R
) of every solution
u
(
x
,
t
) of the Cauchy problem to a single travelling wave
U
(
x
-
c
t
+
ζ
)
as
t
→
∞
. The speed
c
and the travelling wave
U
are determined uniquely by
f
, whereas the shift
ζ
is determined by the initial data. |
---|---|
ISSN: | 0303-6812 1432-1416 |
DOI: | 10.1007/s00285-017-1103-z |