Orexin-A promotes Glu uptake by OX1R/PKCα/ERK1/2/GLT-1 pathway in astrocytes and protects co-cultured astrocytes and neurons against apoptosis in anoxia/hypoglycemic injury in vitro

Orexin-A, which is an endogenous neuropeptide, is reported to have a protective role in ischemic stroke. High-concentration glutamic acid (Glu) induced by hypoxia injury in ischemic stroke can be inhibited by glial glutamate transporter GLT-1 which is only expressed in astroglia cells. A previous st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biochemistry 2017, Vol.425 (1-2), p.103-112
Hauptverfasser: Shu, Qing, Zhang, Jianhuai, Ma, Wei, Lei, Youying, Zhou, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Orexin-A, which is an endogenous neuropeptide, is reported to have a protective role in ischemic stroke. High-concentration glutamic acid (Glu) induced by hypoxia injury in ischemic stroke can be inhibited by glial glutamate transporter GLT-1 which is only expressed in astroglia cells. A previous study reported that Orexin-A may regulate GLT-1 expression. However, the role of orexin-A in the regulation of GLT-1 in ischemic stroke still remains unclear. In this study, we aimed to investigate the effect and the underlying mechanism of orexin-A on Glu uptake in astrocytes in vitro and this effect on protecting the neurons from anoxia/hypoglycemic injury. The expression of GLT-1 significantly increased in the astrocytes with orexin-A treatment under anoxia/hypoglycemic conditions, promoting the uptake of Glu and inhibiting the apoptosis of co-cultured cells of astrocytes and neurons. However, these effects were significantly weakened by treatment with orexin-A receptor 1 (OX1R) antagonist. Orexin-A significantly up-regulated the expressions of PKCα and ERK1/2 under anoxia/hypoglycemic conditions in astrocytes, whereas the OX1R antagonist markedly reversed the effect. Furthermore, PKCα or ERK1/2 inhibitor significantly constrained the GLT-1 expression in astrocytes and facilitated the apoptosis of co-cultured cells, and GLT-1 overexpression could reverse those effects of PKCα or ERK1/2 inhibitor. Taken together, orexin-A promoted the GLT-1 expression via OX1R/PKCα/ERK1/2 pathway in astrocytes and protected co-cultured cells against anoxia/hypoglycemic injury.
ISSN:0300-8177
1573-4919
DOI:10.1007/s11010-016-2866-z