Matrix Metalloproteinase Responsive Delivery of Myostatin Inhibitors
Purpose The inhibition of myostatin - a member of the transforming growth factor (TGF–β) family - drives regeneration of functional skeletal muscle tissue. We developed a bioresponsive drug delivery system (DDS) linking release of a myostatin inhibitor (MI) to inflammatory flares of myositis to prov...
Gespeichert in:
Veröffentlicht in: | Pharmaceutical research 2017, Vol.34 (1), p.58-72 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
The inhibition of myostatin - a member of the transforming growth factor (TGF–β) family - drives regeneration of functional skeletal muscle tissue. We developed a bioresponsive drug delivery system (DDS) linking release of a myostatin inhibitor (MI) to inflammatory flares of myositis to provide self-regulated MI concentration gradients within tissues of need.
Methods
A protease cleavable linker (PCL) – responding to MMP upregulation – is attached to the MI and site-specifically immobilized on microparticle surfaces.
Results
The PCL disintegrated in a matrix metalloproteinase (MMP) 1, 8, and particularly MMP-9 concentration dependent manner, with MMP-9 being an effective surrogate biomarker correlating with the activity of myositis. The bioactivity of particle-surface bound as well as released MI was confirmed by luciferase suppression in stably transfected HEK293 cells responding to myostatin induced SMAD phosphorylation.
Conclusions
We developed a MMP-responsive DDS for MI delivery responding to inflammatory flare of a diseased muscle matching the kinetics of MMP-9 upregulation, with MMP-9 kinetics matching (patho-) physiological myostatin levels.
ᅟ
Graphical Abstract
Schematic illustration of the matrix metalloproteinase responsive delivery system responding to inflammatory flares of muscle disease. The protease cleavable linker readily disintegrates upon entry into the diseased tissue, therby releasing the mystatin inhibitor. |
---|---|
ISSN: | 0724-8741 1573-904X |
DOI: | 10.1007/s11095-016-2038-6 |