Modulation of cyclophosphamide-induced cardiotoxicity by methyl palmitate
Purpose Cyclophosphamide (CP) is a frequently used anticancer and immunosuppressant although its use has been associated with severe cardiotoxicity. The present study examined the ability of methyl palmitate (MP) to counteract CP-induced cardiotoxicity. Methods Adult male Wistar rats were divided in...
Gespeichert in:
Veröffentlicht in: | Cancer chemotherapy and pharmacology 2017-02, Vol.79 (2), p.399-409 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
Cyclophosphamide (CP) is a frequently used anticancer and immunosuppressant although its use has been associated with severe cardiotoxicity. The present study examined the ability of methyl palmitate (MP) to counteract CP-induced cardiotoxicity.
Methods
Adult male Wistar rats were divided into four groups. The first one served as control while the second received a single injection of CP (200 mg/kg, i.p.). The other two groups were administered MP at two different dose levels (300, 400 mg/kg) for 10 days before and 7 days after CP single injection.
Results
CP injection resulted in marked cardiac injury as presented by ECG abnormal changes, elevation of serum creatine kinase-MB (CK-MB), cardiac troponin I, troponin T and lactate dehydrogenase (LDH) and enormous histopathological lesions. Moreover, CP-induced oxidative stress as it elevated malondialdehyde (MDA) and diminished superoxide dismutase activity and glutathione content in heart tissue. Additionally, CP-induced overexpression of toll-like receptors-4 (TLR-4) and nuclear factor kappa-B (NF-κB) accompanied by overproduction of inflammatory cytokines (TNF-α, NO). CP activated cardiomyocyte apoptosis as it increased apoptosis parameters (Bax and caspase-3) and decreased anti-apoptotic marker (Bcl-2). On the other hand, MP treatment attenuated all of the measured parameters of CP-induced cardiotoxicity. MP counteracted CP-induced oxidative stress and suppressed TLR-4 and NF-κB overexpression. Also, levels of cytokines and apoptotic markers were declined while Bcl-2 was elevated in MP treated animals.
Conclusions
MP may serve as a new cardioprotective candidate. The cardioprotective effects of MP may be attributed to its ability to suppress oxidative stress and interrupt TLR4/NF-κB signaling pathway with subsequent amelioration of apoptosis. |
---|---|
ISSN: | 0344-5704 1432-0843 |
DOI: | 10.1007/s00280-016-3233-1 |