Geochemical evidence for the genesis of the Sarical-Yavu hematite mineralizations (Sivas, Central Turkey)

The hematite mineralization under investigation is located 11 km NE of Sarical (Yavu) village of the Yildizeli town (Sivas Province) in central Turkey. The region is within the Central Anatolian Thrust Zone and is comprised of metamorphic units, ophiolitic rocks and overlying Tertiary volcanic and v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of geosciences 2016-05, Vol.9 (6), p.1-15, Article 479
Hauptverfasser: Oksuz, Nursel, Kocak, Ismail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hematite mineralization under investigation is located 11 km NE of Sarical (Yavu) village of the Yildizeli town (Sivas Province) in central Turkey. The region is within the Central Anatolian Thrust Zone and is comprised of metamorphic units, ophiolitic rocks and overlying Tertiary volcanic and volcanosedimentary rocks in addition to Neogene terrestrial deposits. The mineralization occurs as lenticular or bedded bodies and is composed chiefly of hematite and a lesser amount of goethite. Quartz, calcite, and dolomite are the gangue minerals. Kaolinite and zeolite are the common alteration products. In this study, geochemical and mineralogical investigations were carried out using an X-ray diffractometer analysis (XRD), Raman spectroscopy, and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDX). The V/(V + Ni) ratio increases in parallel to the detritic contribution, and when this ratio is less than 0.60, deposition conditions are said to be anoxic. Considering the V/(V + Ni) ratio and Ce anom values of the studied samples, we suggest that the environment is both oxic and anoxic in character. The overall assessment of the field observations, mineral paragenesis, major, trace, and rare earth element (REE) data indicates that the Sarical hematite mineralization is of a hydrothermal-sedimentary type.
ISSN:1866-7511
1866-7538
DOI:10.1007/s12517-016-2432-8