Nuclear factor-kappa B and mitogen-activated protein kinases mediate nitric oxide-enhanced transcriptional expression of interferon-beta

Mitogen-activated protein (MAP) kinase and nuclear factor-kappaB (NF-kappaB) activation are critical for initiating the transcriptional expression of cytokines, cell adhesion molecules, and other factors in the macrophage immune response. Nitric oxide (NO), an endogenous free radical, is a product o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-03, Vol.278 (10), p.8018-8027
Hauptverfasser: Jacobs, Aaron T, Ignarro, Louis J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mitogen-activated protein (MAP) kinase and nuclear factor-kappaB (NF-kappaB) activation are critical for initiating the transcriptional expression of cytokines, cell adhesion molecules, and other factors in the macrophage immune response. Nitric oxide (NO), an endogenous free radical, is a product of macrophages that mediates inflammatory and cytotoxic processes in the immune system. Here we report the effects of NO on MAP kinase signaling and NF-kappaB activation in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and correlate these effects to the induction target genes, including interferon-beta (IFN-beta) and IkappaB-alpha. LPS alone induced a rapid phosphorylation of the stress-activated MAP kinases: c-Jun N-terminal kinase (JNK) and p38. Simultaneous treatment with LPS and the NO donor, diethylamine NONOate (DEA/NO), enhanced and prolonged JNK and p38 phosphorylation. Similarly, DEA/NO prolonged the LPS-induced degradation of the NF-kappaB inhibitory subunit, IkappaB-alpha, despite an increase in IkappaB-alpha mRNA levels. Whereas DEA/NO alone was sufficient to induce JNK and p38 phosphorylation, it was not sufficient to cause IkappaB-alpha degradation. The enhancement of IkappaB-alpha degradation by DEA/NO correlated with an increase in the nuclear levels of the p50 and p65 subunits and DNA-binding activity determined by electrophoretic mobility shift assay. DEA/NO and an additional NO donor, MAHMA/NO, are further demonstrated to enhance the transcriptional expression of the IFN-beta gene. The results suggest a role for NO in enhancing and propagating inflammatory conditions and the immune response.
ISSN:0021-9258
DOI:10.1074/jbc.M211642200