Fish oil diet in pregnancy and lactation reduces pup weight and modifies newborn hepatic metabolic adaptations in rats
Purpose To determine the effects of a diet containing fish oil (FD) during pregnancy and lactation in rats on the metabolic adaptations made by the offspring during early extrauterine life and to compare it to an olive oil diet (OD). Methods Rats were mated and randomly allocated to OD or FD contain...
Gespeichert in:
Veröffentlicht in: | European journal of nutrition 2017-02, Vol.56 (1), p.409-420 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
To determine the effects of a diet containing fish oil (FD) during pregnancy and lactation in rats on the metabolic adaptations made by the offspring during early extrauterine life and to compare it to an olive oil diet (OD).
Methods
Rats were mated and randomly allocated to OD or FD containing 10 % of the corresponding oil. During lactation, litters were adjusted to eight pups per dam. Fetuses of 20 days and pups of 0, 1, 10, 20 and 30 days of age were studied.
Results
Body weight and length were lower in pups of the FD group from birth. The diet, milk, pups’ plasma and liver of FD group had higher proportions of n-3 LCPUFA, but the content of arachidonic acid (ARA) was lower. Plasma glucose was higher, but unesterified fatty acids, triacylglycerols (TAG), 3-hydroxybutyrate and liver TAG in 1-day-old pups were lower in the FD group, and differences in some of these variables were also found in pups up to 30 days old. Liver lipoprotein lipase activity and mRNA expression, and the expression of carnitine palmitoyl transferase I, acyl-CoA oxidase and 3-hydroxy 3-methyl glutaryl-CoA synthase increased more at birth in pups of the FD group, but the expression of sterol regulatory element binding protein-1c and Δ6-desaturase mRNA was lower in the FD group.
Conclusions
Maternal intake of high n-3 LCPUFA retards postnatal development, which could be the result of impaired ARA synthesis, and affects hepatic metabolic adaptations to extrauterine life. |
---|---|
ISSN: | 1436-6207 1436-6215 1435-1293 |
DOI: | 10.1007/s00394-015-1091-y |