Changes in cuticular wax coverage and composition on developing Arabidopsis leaves are influenced by wax biosynthesis gene expression levels and trichome density

Epidermal cells bear a wax-sealed cuticle to hinder transpirational water loss. The amount and composition of the cuticular wax mixture may change as organs develop, to optimize the cuticle for specific functions during growth. Here, morphometrics, wax chemical profiling, and gene expression measure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2017-02, Vol.245 (2), p.297-311
Hauptverfasser: Busta, Lucas, Hegebarth, Daniela, Kroc, Edward, Jetter, Reinhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epidermal cells bear a wax-sealed cuticle to hinder transpirational water loss. The amount and composition of the cuticular wax mixture may change as organs develop, to optimize the cuticle for specific functions during growth. Here, morphometrics, wax chemical profiling, and gene expression measurements were integrated to study developing Arabidopsis thaliana leaves and, thus, further our understanding of cuticular wax ontogeny. Before 5 days of age, cells at the leaf tip ceased dividing and began to expand, while cells at the leaf base switched from cycling to expansion at day 13, generating a cell age gradient along the leaf. We used this spatial age distribution together with leaves of different ages to determine that, as leaves developed, their wax compositions shifted from C₂₄/C₂₆ to C₃₀/C₃₂ and from fatty acid to alkane constituents. These compositional changes paralleled an increase in the expression of the elongase enzyme CER6 but not of alkane pathway enzymes, suggesting that CER6 transcriptional regulation is responsible for both chemical shifts. Leaves bore constant numbers of trichomes between 5 and 21 days of age and, thus, trichome density was higher on young leaves. During this time span, leaves of the trichome-less gl1 mutant had constant wax coverage, while wild-type leaf coverage was initially high and then decreased, suggesting that high trichome density leads to greater apparent coverage on young leaves. Conversely, wax coverage on pavement cells remained constant over time, indicating that wax accumulation is synchronized with cell expansion throughout leaf development.
ISSN:0032-0935
1432-2048
DOI:10.1007/s00425-016-2603-6