Receptor-mediated toxicity of human amylin fragment aggregated by short- and long-term incubations with copper ions

Human amylin (hA1–37) is a polypeptide hormone secreted in conjunction with insulin from the pancreatic β-cells involved in the pathogenesis of type 2 diabetes mellitus (T2DM). The shorter fragment hA17–29 than full-length peptide is capable to form amyloids "in vitro". Here, we monitored...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biochemistry 2017-01, Vol.425 (1-2), p.85-93
Hauptverfasser: Caruso, Giuseppe, Distefano, Donatella A., Parlascino, Paolo, Fresta, Claudia G., Lazzarino, Giuseppe, Lunte, Susan M., Nicoletti, Vincenzo G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human amylin (hA1–37) is a polypeptide hormone secreted in conjunction with insulin from the pancreatic β-cells involved in the pathogenesis of type 2 diabetes mellitus (T2DM). The shorter fragment hA17–29 than full-length peptide is capable to form amyloids "in vitro". Here, we monitored the time course of hA17–29 β-amyloid fibril and oligomer formation [without and with copper(II)], cellular toxicity of different amyloid aggregates, and involvement of specific receptors (receptor for advanced glycation end-products, RAGE; low-affinity nerve growth factor receptor, p75-NGFR) in aggregate toxicity. Fibril and oligomer formation of hA17–29 incubated at 37 °C for 0, 48, and 120 h, without or with copper(II), were measured by the thioflavin T fluorescence assay and ELISA, respectively. Toxicity of hA17–29 aggregates and effects of anti-RAGE and anti-p75-NGFR antibodies were evaluated on neuroblastoma SH-SY5Y viability. Fluorescence assay of hA17–29 indicates an initial slow rate of soluble fibril formation (48 h), followed by a slower rate of insoluble aggregate formation (120 h). The highest quantity of oligomers was recorded when hA17–29 was pre-aggregated for 48 h in the presence of copper(II) showing also the maximal cell toxicity (−44% of cell viability, p  
ISSN:0300-8177
1573-4919
DOI:10.1007/s11010-016-2864-1