Diacylglycerol kinase ε localizes to subsurface cisterns of cerebellar Purkinje cells
Following activation of Gq protein-coupled receptors, phospholipase C yields a pair of second messengers: diacylglycerol (DG) and inositol 1,4,5-trisphosphate. Diacylglycerol kinase (DGK) phosphorylates DG to produce phosphatidic acid, another second messenger. Of the DGK family, DGKε is the only DG...
Gespeichert in:
Veröffentlicht in: | Cell and tissue research 2017-06, Vol.368 (3), p.441-458 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following activation of Gq protein-coupled receptors, phospholipase C yields a pair of second messengers: diacylglycerol (DG) and inositol 1,4,5-trisphosphate. Diacylglycerol kinase (DGK) phosphorylates DG to produce phosphatidic acid, another second messenger. Of the DGK family, DGKε is the only DGK isoform that exhibits substrate specificity for DG with an arachidonoyl acyl chain at the
sn
-2 position. Recently, we demonstrated that hydrophobic residues in the
N
-terminus of DGKε play an important role in targeting the endoplasmic reticulum in transfected cells. However, its cellular expression and subcellular localization in the brain remain elusive. In the present study, we investigate this issue using specific DGKε antibody. DGKε was richly expressed in principal neurons of higher brain regions, including pyramidal cells in the hippocampus and neocortex, medium spiny neurons in the striatum and Purkinje cells in the cerebellum. In Purkinje cells, DGKε was localized to the subsurface cisterns and colocalized with inositol 1,4,5-trisphosphate receptor-1 in dendrites and axons. In dendrites of Purkinje cells, DGKε was also distributed in close apposition to DG lipase-α, which catalyzes arachidonoyl-DG to produce 2-arachidonoyl glycerol, a major endocannabinoid in the brain. Behaviorally, DGKε-knockout mice exhibited hyper-locomotive activities and impaired motor coordination and learning. These findings suggest that DGKε plays an important role in neuronal and brain functions through its distinct neuronal expression and subcellular localization and also through coordinated arrangement with other molecules involving the phosphoinositide signaling pathway. |
---|---|
ISSN: | 0302-766X 1432-0878 |
DOI: | 10.1007/s00441-017-2579-y |